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Abstract. Knot selection for regression splines is crucial to the approximation power of splines.
For univariate splines, many knot selection algorithms are available. However, extending those
univariate algorithms to the multivariate case can be challenging. In this work, an estimation
procedure with knot selection for multivariate regression splines is proposed, where the knot
selection part is adapted from an existing univariate knot selection algorithm. Simulation
results are included to demonstrate the performance of the proposed method.

1. Introduction
In nonparametric regression, one common approach for estimating the regression function is to
approximate the regression function using known basis functions and then estimate the coefficients of
basis functions using the method of least squares. Some examples of basis functions that have good
approximation properties and have been used in nonparametric regression are wavelets [1] and spline
functions [2]. Approximation based on fuzzy transforms is also a tool for function approximation (e.g.
[3] and [4]). However, to apply this tool in nonparametric regression, an estimation procedure needs to
be proposed and its statistical properties are to be investigated. In this paper, the focus is on
nonparametric regression using spline approximation with least squares estimation.

In nonparametric regression, when the regression function is approximated using a spline function,
the knot locations of the spline function have a significant effect on the approximation accuracy. There
are different approaches for knot determination for regression splines. For instance, one can use
equally spaced knots and determine the number of knots based on criteria such as the Bayesian
information criterion (BIC) or Akaike information criterion (AIC). When using equally spaced knots
splines to approximate a smooth regression function to obtain a regression function estimator, Stone [5]
showed that the rate of convergence is optimal in the sense of [2] if the number of knots grows at a
proper rate as the sample size increases.

In addition to the equally-spaced knot approach, another approach is to estimate the knot locations
as unknown parameters, such as in [6] and [7]. While this approach offers great flexibility for
determining knot locations, it is often time consuming to search for the best knot locations. When the
regression function is multivariate, it is expected that the optimization of knot locations become even
more challenging.

An alternative to the knot estimation approach is to perform knot selection. See [8] and [9] for
example. Huang [10] proposed an algorithm for knot selection for univariate regression splines based
on statistical testing. In this work, an extension of Huang’s algorithm to the multivariate case is

mailto:tmhuang@nccu.edu.tw.or%20g
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considered, and an estimation procedure based on the algorithm is proposed. The rest of the paper is
organized as follows. The proposed estimation procedure for multivariate regression splines is given
Section 2. Results of simulation experiments are given in Section 3. Conclusions are given in Section
4.

2. Methodology
In this section, the problem set-up will be described and the proposed estimation procedure will be
introduced. In addition, another estimation method that is compared with the proposed method in
Section 3, will also be introduced. Suppose that   niYii ,,1:, X are n independent observations
from the following nonparametric regression model:

,,,1,)( nifY iii  X (1)
where f is the regression function to be estimated and i s are errors. Let d be the dimension of each

iX . The knot selection problem arise when one tries to approximate f using a spline function. For the
univariate case where 1d , if the regression function f in (1) can be approximated well using a spline
of order m and knots .,,1 k  Then an approximate model for (1) is

�� � ���
�th �������� t� ��h

� ����th������� t ���� � h������ (2)
where

j s and
j s are coefficients, j

j xxp )( for 1,,0  mj  and for a real number  ,

��th�� �t� �
�tt ���th if t > ��
� otherwise.

For the multivariate case, one may use the tensor product of univariate basis functions for splines
as multivariate basis functions. However, if all tensor basis functions are used, the number of basis
functions can be quite large, especially when many knots are used for each dimension. The tensor
basis functions used in the proposed method only include basis functions of one the two forms:

daaB ,,1 
,

and
djjp ,,1 
, where for real numbers daa ,,1  and integers  3,,0,,1  djj ,





d

l
ladaa xBxxB

ld
1

,31, )(),,(
1



and





d

l
ljdjj xpxxp

ld
1

1, )(),,(
1



for real numbers dxx ,,1  . For the proposed method, the basis functions are selected from a
collection of basis functions determined by some knot vectors

kξξ ,,1  , where ),,( ,1, djjj  ξ is a �-

dimensional vector for .,,1 kj  Let
k

S ξξ ,,1 
denote the collection of basis functions determined by knot

vectors
kξξ ,,1  , then

  kjBSS
djjk

,,1:
,1,1 ,,0,,   ξξ (3)

where   .3,,0,,: 1,,0 1
  djj jjpS

d
Thus the approximation model for (1) considered in this study

is
,,,1,)(* niBY ii

j
jji   X (4)

where *
jB s are some basis functions selected from

k
S ξξ ,,1  and j s are the coefficients. Next, we will

give the details of the proposed estimation procedure in Section 2.1.

2.1. The proposed estimation procedure and the BIC-Backward algorithm
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As mentioned before, for the proposed method, the basis functions are selected from ,,,1 k
S ξξ  which is

defined in (3), where kξξ ,,1  are knot vectors of dimension . In this section, we will give details of
how to select the knot vectors.

To determine whether a knot vector ),,( 1 d ξ is needed, we construct a random test ξ,,0.05 ψ ,
which is an extension of the test in [10]. The test ξ,,0.05 ψ is based on ),( ii YX s such that

,||||  ξX i
where ||||  is the Euclidean norm. To obtain the test statistic, we generate IID coefficients

),,( 1 dbb  from the uniform distribution on [−1,1]. Let b = T
dbb ),,( 1 be the vector of the generated

coefficients. The hyperplane  0)(:  ξxbx T splits the iX s such that  |||| ξX i
into two groups

 1: iiX and 2: iiX , where
 ||:||},,1{{1 ξX ini  and }0)(  ξXb i

T

and
 ||:||},,1{{2 ξX ini  and }.0)(  ξXb i

T

For � = 1, 2, let jn be the number of elements in j . If both 1n and 2n are at least 40, regress

 
jiiY 
on tensor products of univariate linear functions of  

jii X using linear regression and let jâ be

the d2 ×1 least squared estimator of regression coefficient vector and jRSS be the residual sum of
squares. Then, compute the conditional covariance matrix of 21 ˆˆ aa  given

iX s: 21 i assuming that
the regression errors are

i s, and i s are IID  2 0 ,N and are independent of
iX s. Under the above

assumption, the conditional covariance matrix of 21 ˆˆ aa  given
iX s:

21 i is 2 multiplied by a
known matrix. Let Σ denote the matrix such that Σ2σ is the conditional covariance matrix of 21 ˆˆ aa 
given

iX s: 21 i . Then the test statistic is given by

   
2

21
1

21

ˆ
ˆˆˆˆ


aaaa Tdef 




bW , (5)

where

2
ˆ

21

212





nn
RSSRSS .

The above process of generating b to obtain bW is repeated until three bW s are obtained. However,
the number of repetitions is limited to 10. Let W be the maximum of the bW s. The maximum is
defined as  if there is not any bW obtained. Then W is the test statistic for .,,0.05 ψ If W is greater

than the 95% quantile of the 2χ distribution with d2 degrees of freedom, then ξ is considered as an
important knot vector. The proposed estimation procedure for f is given below.

Algorithm 2.
• For � � h� . . ., 5, take j/δ 21 and carry out Steps (i) and (ii).

(i) For � � h� . . .� �� conduct the test
iX,,0.05 ψ . Select iX as a knot vector if the �-value is less

than 0.05.
(ii) Let jT be the set of selected knot vectors from (i). Take the regression model in (4) as the full

model and then perform backward elimination of variables to obtain a sequence of reduced
models. Choose the reduced model with the smallest BIC value. Let jBIC denote the smallest
BIC value.
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• Let
0j

BIC be the smallest BIC value among 1BIC , . . ., 5BIC . The estimated regression function in
the model corresponding to

0j
BIC is the final estimator of the regression function f .

For comparison purpose, another estimation method based on equally-spaced knots with backward
elimination is considered. The method will be referred as BIC-Backward. The details of BIC-
Backward are given below.

Algorithm for BIC-Backward.
• For � � h� . . .� 4, take j/δ 21 . Let )12 ,()( 1   ,,,ξ,ξ k  be the � equally spaced knot points in (0,

1) with 12  jk . Let ,fullS be the set of tensor basis functions, where for each dimension, the
univariate basis functions are ,,..., 30 pp

k
BB  ,3,3 ,...,

1
.

(i) Take the regression model in (4) as the full model with the basis functions *
jB s replaced by

the basis functions in
,fullS and then perform backward elimination of variables to obtain a

sequence of reduced models. Choose the reduced model with the smallest BIC value. Let
jBIC denote the smallest BIC value.

• Let
0j

BIC be the smallest BIC value among 1BIC , . . .,
5BIC . The estimated regression function in

the model corresponding to
0j

BIC is the final estimator of the regression function f.
Note that � � 5 is not used in the algorithm for BIC-Backward since the number of basis functions
exceeds the sample size � = 1000 in such case.

3. Simulation results
A simulation experiment has been carried out to examine the performance of the proposed estimation
procedure and the results are given in this section.

For the simulation experiment, the data generating process is described below. 100 data sets are
generated from model (1) with � = 1000,

nXX ,...,1
are IID random vectors from the uniform

distribution on  20,1 , i s are IID random variables from  2 0 ,N with various  values, and
 321 ,, ffff  . Here 1f is the probability density function for the bivariate normal distribution with

mean (0.4, 0.4) and diagonal covariance matrix with diagonal vector (0.05, 0.05),



 


 otherwise.       0

;]8.0,2.0[)( if  )22(
)( 

2

2
u,v,v/u/c

u,vf

where � is the density function of the Joe copula with parameter 40, and
3f is the two dimensional

AMH copula density with parameter −0.8. The cumulative distribution function of the Joe copula with
parameter � is the function 1C given by

 /1
1 ))1()1()1()1((1)( vuv-u-u,vC 

for  20,1),( vu . The cumulative distribution function of the AMH copula with parameter is the
function

2C defined by

)1)(1(1
)( 2 vu

uvu,vC





for  20,1),( vu . The graphs of 321 ,, fff on  20,1 are shown in the left, middle and right pannels of
figure 1 respectively.
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Figure 1. Graphs of 321 ,, fff .

For each of the generated data set, the proposed method (Algorithm 2) is applied to obtain an
estimated regression function f̂ . The mean squared error





n

i
ii ff

n 1

2))()(ˆ(1 XX

is computed to evaluate the estimation accuracy. For comparison purpose, the algorithm for BIC-
Backward is also applied to generated data sets.

For each of the three functions 321 ,, fff and for each �� the mean and standard deviation of the 100
mean squared errors are reported in table 1 for the BIC-Backward method and the proposed method.
The � values are chosen so that the ratio


|)(| XfEr 

is about 140 or 7 when the distribution of X is the uniform distribution on  20,1 .
From the results in table 1, for 1f and 2f , which need to be approximated by splines with many

knots, the proposed method performs better than the BIC-Backward method when � is small, and the
BIC-Backward method performs better than the proposed method when � is large. For 3f , which is a
smooth function, the proposed method performs better for the large � case, and the BIC-Backward
method performs better for the small � case.

Table 1. Averages and standard deviations for mean squared errors.
� BIC-Backward Algorithm 2

1f 3.890 ×10−2 7.695 × 10−5 (2.629 × 10−5) 2.989 × 10−5 (1.023 × 10−5)

1f 7.781 × 10-1 2.316 × 10−1 (3.644 × 10−2) 2.911 × 10−1 (2.880 × 10−2)

2f 2.117 × 10−2 1.697 × 10−4 (8.929 × 10−5) 1.463 × 10−4 (7.026 × 10−5)

2f 4.234 × 10−1 2.2189 × 10−1 (8.949 × 10−2) 2.527 × 10−1 (6.812 × 10−2)

3f 1.636 × 10−3 1.322 × 10−7 (2.608 × 10−8) 1.271 × 10−6 (1.562 × 10−7)

3f 3.272 × 10−2 2.2534 × 10−5 (7.555 × 10−6) 2.100 × 10−5 (6.142 × 10−6)

4. Discussion and conclusions
In this article, an estimation procedure for nonparametric regression is proposed. The proposed
procedure is based on spline approximation and a knot vector selection step is involved. The knot
vector selection step is adapted from the univariate knot selection algorithm in [10]. One major
modification is that the requirement that the distance between two knots is at least � is removed so that
knot vectors that are close to one another may be selected when necessary. To avoid the overfitting
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problem when too many knot vectors are selected, the backward elimination step is included in the
proposed procedure.
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