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Abstract. Lepton Flavor Universality Violation (LFUV) in b → sl+l− processes is
investigated in the context of a 331 model. It is shown that in order to explain the experimentally
observed deviations from the Standard Model in these FCNC transitions, a non-minimal version
of the model has to be considered. We investigate the ability of this model in accommodating
the model-independent scenarios currently favored by global fits.

1. Introduction
Experimental hints of Lepton Flavor Universality Violation (LFUV) have appeared in semi-
leptonic B-decays, both in charged and in neutral processes. In fact, disagreements with the
SM expectations have shown contributions of non-SM origin of size O(10%) compared to the
corresponding SM amplitudes. In particular, four anomalies have appeared in ratios assessing
LFU in the decays B −→ D(∗)lν̄, (l = e, µ) and B −→ K(∗)l+l−. For this latter, the ratio
reported by LHCb, which differs from the näıve expectation RSM

K(∗) = 1, is

RK(∗) =
B (B −→ Kµ+µ−)(q2∈[q2min,q

2
max])

B (B −→ Ke+e−)(q2∈[q2min,q
2
max])

:


RexpK[1.1,6.0] = 0.846+0.060+0.016

−0.054−0.014[1], 2.5σ

RexpK∗[0.045,1.1] = 0.66+0.11
−0.07 ± 0.03[2], 2.7σ

RexpK∗[1.1,6.0] = 0.69+0.11
−0.07 ± 0.03[2], 3.0σ

where RK(∗) are measured over specific ranges for the squared dilepton invariant mass q2

(in GeV 2/c4). In the experimental data, the first errors are statistical and the second ones
are systematic. A series of theoretical speculations about a possible New Physics (NP)
interpretations have emerged, with the hypothesis that the NP responsible for the breaking
of LFU is coupled mainly to the third generation of quarks and leptons. A class of particulary
motivated models includes those which are based on new (heavy) exotic bosonic mediators at
the TeV scale that couple to the leptons and quarks differently. A good candidate of such models
is the 331 model, whose heavy (exotic) charged gauge bosons are LFUV processes mediators.
The paper is organized as follows: in Sec. 2 we review the main features of the non-minimal 331
model for our specific choice of the parameter β. In Sec. 3, we set the problem and describe the
general framework of our study. Sec. 4, is dedicated to the neutral gauge boson-mediated NP
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contribution for the process of interest. In Sec. 5, we present these contributions and compare
them to the global analysis scenarios that are currently favord by the data, and finally, in Sec.
6, we draw our conclusion.

2. The model
We extand the SM by enlarging its gauge group to the broader SU(3)C × SU(3)L × U(1)X
group. The miminal construction [3] is based on placing the left-handed lepton doublets in
SU(3)L triplets that transform in the same way, while the flipped set-up [4] is based on perfect
quark family replication. In both cases, the gauge bosons couple identically to all lepton and
quark families, respectively. Thus, no LFUV can arise from these couplings. In order to generate
LFUV from different couplings of the gauge bosons to all fermionic fields, we adopt the non-
miminal 331 construction (Model B in ref. [5]). In this construction, the leptons should be
grouped in no less than 5 generations (appendix C in ref. [8]). The electric charge generator in
SU(3)L × U(1)X is given by

Q = T3L + βT8L +XI3 (1)

where T8L = (1/2
√

3)diag(1, 1,−2) and T3L = (1/2)diag(1,−1, 0) are the SU(3)L diagonal
generators, X is the quantum number associated with U(1)X and I3 = diag(1, 1, 1). The
proportionality constant β distiguishes differents 331 models. It is shown that it can have 4
possible values: ±

√
3,±(1/

√
3) which play a key role in determining the electric charges of

extra particles and only for some of its values, the gauge bosons have integer charges. For
instance, β = ±(1/

√
3) does not introduce exotic electric charges of fermions in order to cancel

the anomalies. Furthermore, for theses value, the heavy gauge bosons have an interger electric
charge. The non-minimal set adopted for β = −1/

√
3 in ref. [8] presents a spectrum that

contains 14 charged particles with masses in agreement with the observations (no light particles
apart from the SM ones): 9 quarks (6 light SM’s and 3 exotic heavy ones) and 5 charged leptons
(3 SM’s and two exotic).

2.1. Fields and representations
In our case, we adopt the (anomaly free) non-minimal choice for β = 1/

√
3 (Model B in ref.

[6]). We introduce the left-handed components together with the right-handed partners of only
chaged fermion particles

(i) three generations of quarks

QmL =

dmum
Um

 ;uRm; dRm;URm, (m = 1, 2) (2)

with SU(3)C×SU(3)L×UX(1) quantum numbers
(
3, 3̄, 13

)
, (3̄, 1, 2/3) , (3̄, 1,−1/3) , (3̄, 1, 2/3).

Q3
L =

u3d3
D3

 ;uR3 ; dR3 ;DR
3 (3)

with SU(3)C×SU(3)L×UX(1) quantum numbers (3, 3, 0) , (3̄, 1, 2/3) , (3̄, 1,−1/3) , (3̄, 1,−1/3).

(ii) five generations of leptons

lL1 =

e−L1

νL1
NL

1

 ;e−R1 (4)
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with SU(3)C × SU(3)L × UX(1) quantum numbers (1, 3̄,−1/3) , (1, 1,−1).

lLn =

 νLn
e−Ln
E−Ln

 ;e−Rn ;E−Rn , (n = 2, 3) (5)

with SU(3)C × SU(3)L × UX(1) quantum numbers (1, 3,−2/3) , (1, 1,−1) , (1, 1,−1).

lL4 =

 NL
4

E−L4

F−L4

 ;E−R4 ;F−R4 (6)

with SU(3)C × SU(3)L × UX(1) quantum numbers (1, 3,−2/3) , (1, 1,−1) , (1, 1,−1).

lL5 =


(
E−R4

)c
NL

5

NL
6

 (7)

with SU(3)C × SU(3)L × UX(1) quantum numbers (1, 3, 1/3).

It should be stressed that, originally, the charged lepton of the fifth generation should be positive
(E+L

5 , with a right handed component E+R
5 ); but after the ΛNP scale SSB, this exotic degree of

freedom will be masseless (together with E−4 ). Meaning that, at the EW scale, not only the 3
SM charged leptons would acquire mass, but also the two exotic ones, and because the spectrum
should contain no light particles apart from the SM ones, we have to get rid of such presence.
To do so, we identify the E+L

5 with the charge conjugate of the right handed component of E−4 .
Thus, the right handed part of E−4 should belong to the lepton triplet lL5 rather than being a

singlet, besides, there would be no E+R
5 . The model contains 16 charged fermions: 9 quarks (3

lignt SM’s plus 3 heavy exotic ones) and 7 leptons (3 SM ones plus 4 exotic). The SU(3)L gauge
bosons are denoted in the matrix form by Wµ = W a

µT
a, where T a = λa/2 are the generators

of SU(3)L (λa being the Gell-Mann matrices and a = 1, ..8). For our specific choice of β, the
neutral ones are W 3

µ , W 8
µ , W 6

µ and W 7
µ . In what follows, we introduce the flavor vectors where

the fields (relevant for our process) with the same electric charge are gathered.

D = (d1, d2, d3, D3)
T

f− =
(
e−1 , e

−
2 , e

−
3 , E

−
2 , E

−
3 , E

−
4 , F

−
4

)T (8)

2.2. Symmetry breaking and spectrum
The model undergoes two stages of Spontaneous Symmetry Breakings (SSB). The first, triggered
by a sextet and a triplet [10], occurs at an energy scale ΛNP ∼ TeV and allows one to recover
the SM. At the order of ΛNP , all exotic particles acquire mass: 7 fermions (4 leptons ans 3
quarks), and 5 quage bosons W 4

µ , W 5
µ , W 6

µ and W 7
µ . The two neutal Xµ and W 8

µ yield a massive

Z
′
µ and a massesless one Bµ, with a mixing angle θ331(

Z
′
µ

Bµ

)
=

(
cos θ331 sin θ331
− sin θ331 cos θ331

)(
Xµ

W 8
µ

)
(9)

Where

sin θ331 =
g√

g2 +
g2X
18

, cos θ331 =

gX
3
√
2√

g2 +
g2X
18

(10)
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Here, g and gX are the gauge coupling constants. The subsequent one occurs at energy scale
ΛEW . It reproduces the EWSB of the SM and is accomplished by means of two triplets and two
sextets. At this stage, the remaining SM fermions (except for the neutrinos) and the 3 gauge
fields should all acquire a mass. The neural bosons W 3

µ and Bµ mix together with a mixing
angle θW (Weinberg angle) to yield a massesless Aµ identified with the photon and a massive
Zµ (at the order of interest O(ε2))(

Zµ
Aµ

)
∼
(

cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
(11)

where, the two mixing angles θ331 and θW and the two gauge coupling constants obey the
relations

cos θ331 =
1√
3

tan θW ,
g

gX
=

tan θ331

3
√

2
(12)

Before proceeding, we should mention that the neutral leptons are left out of the discussion.

3. General framework
The total effective Hamiltonian, at the b−mass scale, for the quark-level transition b → sl+i l

−
j

in the presence of NP operators is expressed as

Heff
(
b→ sl+i l

−
j

)
= HSMeff +HNPeff = −4GF√

2
V ∗tsVtb

∑
i

CiOi (13)

where

HSMeff = −4GF√
2
V ∗tsVtb

{
6∑
i=1

Ci(µ)Oi(µ) + C7
e

16π2
[s̄σµν(msPL +mbPR)b]Fµν

+C9
α

4π
(s̄γµPLb)

(
l̄iγµlj

)
+ C10

α

4π
(s̄γµPLb)

(
l̄iγµγ5lj

)} (14)

Here, PL,R = (1∓ γ5) /2 and α = e2/4π is the fine-structure constant. The six-dimentional
operators Oi (i = 1, ..6) correspond to Pi in ref. [7] and Ci are the Wilson coefficients. In
the SM, only O7, O9 and O10 are significant at the scale µ = mb. As the analyses of
the b → s transitions indicate that the observed pattern of deviations is consistent with a
larger vector/axial (VA) contribution (Cµ9 , C

µ
10), we will focus only on the assumed larger VA

contributions. The Hamiltonian for the NP contribution related to the deviations seen in the
transition b→ sl+i l

−
j is thus

HNPeff = HV Aeff = −4GF√
2
V ∗tsVtb

α

4π

{[
RV (s̄γµPLb)

(
l̄iγµlj

)
+RA (s̄γµPLb)

(
l̄iγµγ5lj

)]
+
[
R
′
V (s̄γµPRb)

(
l̄iγµlj

)
+R

′
A (s̄γµPRb)

(
l̄iγµγ5lj

)]} (15)

where RV,A are NP effective couplings. The VA contribution can only come from the neutral

gauge bosons Z
′
µ,Zµ, Aµ and W 6,7

µ .

4. Neutral gauge bosons contributions
In what follows, we will consider only the contributions at the lowest order in ε where
(ε = ΛEW /ΛNP ), and we will focus only on the non-SM contributions to the Wilson Coefficients
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of interest R
(′)
V ≡ C

(′)
9 and R

(′)
A ≡ C

(′)
10 in eq. (15). We define the unitary rotation matrices

relating (unprimed) fermion interaction eigenstates and (primed) mass eigenstates

fL = V (f)f
′L, fR = W (f)f

′R (16)

When diagonalizing the mass matrix using perturbation theory in powers of ε we get:

(i) at order ε0, each of the masseless SM particles and heavy exotic fermions mix only among
themselves.

(ii) at order ε1, there is only mixing between SM and exotic particles.

(iii) at order ε2, there is mixing among all the particles of the same electric charge.

4.1. Neutral currents mediated by Zµ and Z
′
µ bosons

The part of the interaction Lagrangian density that gives the couplings of fermions to neutral
gauge boson Z

′
µ which is relevant to the process is (in the interaction eigenbasis)

LZ′ ⊃
cos θ331
gx

Z
′
µ


D̄Lγµ


9g2+g2x
3
√
6

0 0 0

0 9g2+g2x
3
√
6

0 0

0 0 −
√

3
2g

2 0

0 0 0
√

6g2

DL −
g2x

3
√

6
D̄RγµDR

+f̄−L γµ



9g2−g2x
3
√
6

0 0 0 0 0 0

0 −9g2−g2x
3
√
6

0 0 0 0 0

0 0 −9g2−g2x
3
√
6

0 0 0 0

0 0 0 18g2−2g2x
3
√
6

0 0 0

0 0 0 0 18g2−2g2x
3
√
6

0 0

0 0 0 0 0 −9g2−g2x
3
√
6

0

0 0 0 0 0 0 18g2−2g2x
3
√
6


f−L

+f̄−R γµ



−g2x√
6

0 0 0 0 0 0

0 −g2x√
6

0 0 0 0 0

0 0 −g2x√
6

0 0 0 0

0 0 0 −g2x√
6

0 0 0

0 0 0 0 −g2x√
6

0 0

0 0 0 0 0 −9g2+g2x
3
√
6

0

0 0 0 0 0 0 −g2x√
6


f−R



(17)

It is clear that the restriction of the interaction matrix LZ′ to the SM particles is not proportional
to the identity matrix in flavor space. So, the FCNC transition arises already before moving to
the mass eigenbasis. Due to the O(ε2) suppresion, compared to the SM, that results from the
heavy mass of the Z

′
µ boson, we conclude that the NP contribution from the Z

′
µ boson starts at

O(ε2).
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For the interaction with Zµ

LZ ⊃ cos θW gZµ

D̄Lγµ


−1+cos2 θ331

2 0 0 0

0 −1+cos2 θ331
2 0 0

0 0 −1+cos2 θ331
2 0

0 0 0 cos2 θ331

DL + cos2 θ331D̄RγµDR

+f̄−L γµ



−1+3 cos2 θ331
2 0 0 0 0 0 0

0 −1+3 cos2 θ331
2 0 0 0 0 0

0 0 −1+3 cos2 θ331
2 0 0 0 0

0 0 0 3 cos2 θ331 0 0 0
0 0 0 0 3 cos2 θ331 0 0

0 0 0 0 0 −1+3 cos2 θ331
2 0

0 0 0 0 0 0 3 cos2 θ331


f−L

+f̄−R γµ



3 cos2 θ331 0 0 0 0 0 0
0 3 cos2 θ331 0 0 0 0 0
0 0 3 cos2 θ331 0 0 0 0
0 0 0 3 cos2 θ331 0 0 0
0 0 0 0 3 cos2 θ331 0 0

0 0 0 0 0 1−3 cos2 θ331
3
√
6

0

0 0 0 0 0 0 3 cos2 θ331


f−R


(18)

In the case of the SM gauge boson, The b → s transition arises at O(ε2), and because there
is no O(ε2) suppression due to the bososn mass, the NP contribution for the Zµ starts also at
O(ε2). The interactions of the right hadded quarks, with both neutral bosons, are proportional
to the identity in flavor space, so no flavor change can arise at any order in ε . We conclude that
Z
′
µ and Zµ do not contribute to C

′
9 and C

′
10. Our model does not allow for any contrinution to

C
′
9,10 in the process.

4.2. Neutral currents mediated by Aµ and W 6,7
µ

For the photon Aµ, the interaction with down-type quarks is proportional to the identity matrix
in the flavor space

LA =
√

3 cos θ331 cos θW gAµ

[
1

3
D̄γµD

]
(19)

So, there are no FCNC from the photon interaction. As for W 6,7
µ , their contributions [9] to the

process are of the O(ε3). So, they can be neglected compared to Z
′
µ and Zµ’s.

4.3. The NP contribution
Moving to the mass eigenbasis, and exploiting the unitarity of the rotation matrices V and W
for the δij contribution (i and j refer to the SM lepton generations), we eliminate the coupling g

by means of eq. (12), the leading-order Z
′
µ and Zµ contributions in terms of effective operators

read

HZ
′

eff ⊃
g2x

108 cos2 θ331

1

M2
Z′
V ∗3kV3l

4π

α

{[(
1 + 9 cos2 θ331

2

)
δij − V ∗1iV1j

]
Oijkl9

+

[(
3 cos2 θ331 − 1

2

)
δij + V ∗1iV1j

]
Oijkl10

} (20)
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and

HZeff ⊃
cos2 θW

(
1 + 3 cos2 θ331

)
8

g2

M2
Z

4π

α
V ∗4kV4lδij

[(
−1 + 9 cos2 θ331

)
Oijkl9 +

(
1 + 3 cos2 θ331

)
Oijkl10

]
(21)

where the indices k, l refer to the SM generations of the quark mass eigenstates (assuming k 6= l).
The NP contributions can be represented by the two quanties fZ′ and fZ where

g2x
108 cos2 θ331

1

M2
Z′
V ∗3kV3l

4π

α
= fZ′

(
−4GF√

2
V ∗tsVtb

)
⇒ fZ′ = − 1

2
√

2GFVtbV
∗
ts

4π

α

1

6− 2 tan2 θW

g2

M2
Z′
V ∗3kV3l

(22)

and
cos2 θW

(
1 + 3 cos2 θ331

)
8

g2

M2
Z

4π

α
= fZ

(
−4GF√

2
V ∗tsVtb

)
⇒ fZ = − 1

2
√

2GFVtbV
∗
ts

4π

α

1

8

g2

M2
Z

V ∗4kV4l

(23)

5. Wilson coefficients and LFUV
The NP contributions from Zµ and Z

′
µ to the Wilson coefficients can be written in terms of the

quantities fZ′ and fZ as

Cij9 = fZ′

(
−λij +

1 + 3 tan2 θW
2

)
δij + fZ

(
−1 + 3 tan2 θW

)
δij (24)

and

Cij10 = fZ′

(
λij +

tan2 θW − 1

2

)
δij + fZ

(
1 + tan2 θW

)
δij (25)

where λij = V ∗1jV1j . Even though our model allows for lepton flavor violating transition with
different leptons in the final state (i 6= j), these processes have not been observed up to now, so,
assuming that they are suppressed, we set their coefficients to zero. The solution fZ′ = 0, i. e.
the NP contribution is zero, meaning that there would be no LFUV, will be discarded. So, we
are left with λij = 0 for i 6= j. By definition

λij = 0 =⇒ V ∗1iV1j = 0 (26)

Equation (26) does not necessarily imply that both V matrix elements have to be zero; one
rotation matrix entry can be non-zero for a generation i (e.g. i = 1) while the other two entries
(e.g. j = 2, 3) are zero, ensuring that the above annihilation is realized. We denote with I
the generation for which the entry for the rotation matrix is non-zero, and with i the other
generations. We get

CI9 = fZ′

(
−λI +

1 + 3 tan2 θW
2

)
+ fZ

(
−1 + 3 tan2 θW

)
CI10 = fZ′

(
λI +

tan2 θW − 1

2

)
+ fZ

(
1 + tan2 θW

) (27)
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and

Ci9 = fZ′

(
1 + 3 tan2 θW

2

)
+ fZ

(
−1 + 3 tan2 θW

)
Ci10 = fZ′

(
tan2 θW − 1

2

)
+ fZ

(
1 + tan2 θW

) (28)

Inverting relations (28) we get

fZ′ =
1 + tan2 θW
4 tan2 θW

Ci9 −
−1 + 3 tan2 θW

4 tan2 θW
Ci10 (29)

From the system of equations (28) and (27) we get

2λIfZ′ = CI10 − CI9 − Ci10 + Ci9 (30)

We now have to identify which index corresponds to which lepton, knowing that, based on
phenomenological constraints, the electronic NP contribution to the effective Hamiltonian Ce9,10
is absent.

(i) If we identify the electron with the index i (for which the entry for the rotation matrix
vanishes), we set Ci9,10 = 0. Equation (29) implies that fZ′ = 0, solution that has to be
discarded.

(ii) If the electron is identified with the index I, the coefficients CI9,10 must be set to zero in
this case, and the remaining index i would correspond to the other two generations. In this
case, eq. (30) yields costraints on the non-vanishing NP Wilson coefficients for µ and τ

Cµ9
Cµ10

=
2 tan2 θW + λe

(
1− 3 tan2 θW

)
2 tan2 θW − λe (1 + tan2 θW )

(31)

Due to the unitarity of the 7× 7 rotation matrix V , we have

7∑
i=1

| V1i |2= 1 =⇒ λI =| V1I |2= 1−
7∑
i=4

| V1i |2 (32)

which means that λe ∈ [0, 1]. For λe = 1, equation (31) gives the exact equality Cµ9 /C
µ
10 = −1(

sin2 θW ' 0.235
)
. As λe decreses, the value of Cµ9 /C

µ
10 increses until we get the exact equality

Cµ9 /C
µ
10 = 1 for λe = 0. Thus, the one-dimentional scenario of the global analysis that favors

NP in Cµ9 = −Cµ10 is allowed in our model only for λe = 1. As for the other two scenorios (NP in
Cµ9 = −Cµ9 and NP in Cµ9 [11]), they cannot be described in the framework of our model, since
no FCNC arise for right-handed quarks because their interaction terms are diagonal in flavor
space ((18) and (17)). Thus Cµ9′ = 0.
Figure (1) shows that the allowed regions for the Wilson coefficients in both, case A and B [8]
for β = −1/

√
3 agree with our case β = −1/

√
3 only for λe = 1.

In summary, not only the electron (first generation of SM leptons) has to be identified with the
non-vanishing entry in the rotation matrix V , but it has to be also a mass eigenstate in order
to have non-vanishing NP contributions to Wilson coefficients, for both µ and τ that agree with
the favored one-dimentional scenario of NP in Cµ9 = −Cµ10.
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Figure 1. Allowed regions for the Wilson coefficients for both cases B (wedge in gray) and A
(wedge in blue) for β = −1/

√
3 [8] compared to β = 1/

√
3 (thick black line)

6. Conclusion
In an attempt to give an explanation to the deviations from the Standard Model in b → sl+l−

transitions, we have investigated a non-minimal version of the 331 models. In order to explain
LFUV, five lepton triplets are required in this set, where the additional heavy gauge bosons
and fermions have electric charges similar to those of the SM particles. We have shown how
this model could explain these experimentally observed deviations, provided that the latter are
dominated by neutral gauge bosons Zµ and Z

′
µ contributions. Due to this assumption, the model

turns out to have no right-handed currents, thus, not able to accomodate NP contribution in
Cµ9 = −Cµ9 . When constraints on the mixing matrices between interaction and mass fermion
eigenstates are put in light of the absence of contributions to b → se+e−, our model becomes
able to accomodate significant NP contribution in Cµ9 = −Cµ10, in agreement with an NP scenario
favored by global fits.
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