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Abstract. This study will examine the characteristics of the Bayes estimator in the Binomial 

distribution with prior Beta theoretically and empirically. The theoretical result shows that the 

Bayes estimator in this distribution is an asymptotically unbiased and consistent, but inefficient 

estimator. Meanwhile, empirically, Bayes's estimator is an unbiased estimator, efficient, and 

consistent. 
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1.  Introduction 

The estimation method is a statistical tool that is useful for estimating the value of population 

parameters based on sample data. Basically, the estimation is divided into two, namely point 

estimation and interval estimation [1]. There are two methods to estimate the point, namely the 

classical method and the Bayes method. In the classical method, conclusions are based on information 

from a random sample drawn from the population. Meanwhile, the Bayes method uses or combines 

subjective knowledge about the probability distribution of the unknown parameter with the 

information obtained from the sample data. Subjective knowledge about the probability distribution of 

the unknown parameter is an initial distribution that provides information about a parameter called a 

prior. After the observations are made, the information in the prior distribution is combined with the 

information with the sample data through the Bayes theorem, and the results are expressed in a 

distribution called the posterior distribution which then becomes the basis for inference in the Bayes 

method [2]. In the Bayes method, all parameters in the model are treated as variables while in the 

classical method the parameters are considered as constants. So that if a case occurs, that is, in 

different situations and places of observation, the parameters change, then with the Bayes principle 

this problem can be solved [3]. The Bayes method has been developed to estimate small area 

parameters such as the Empirical Bayes (EB), Empirical Best Linear Unbiased Prediction (EBLUP), 

Hierarchical Bayes (HB), and Spatial EBLUP. Several studies related to the application of this method 
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are Widiarti et.al. [4] using Spatial EBLUP method for estimating per capita expenditure in Lampung 

Province, Zou et.al. [5] using EB method to be applied to highway safety, Pusponegoro et.al. [6] using 

Spatial EBLUP method for estimating poverty, Najera [7] using HB method for estimating stunting, 

Buil-Gil [8] using Spatial EBLUP method for estimating perceived neighbourhood disorder, and Li [9] 

using EB method for estimate road safety. 

This study will examine the characteristics of the Bayes estimator such as unbiased, minimum 

variance (efficiency), and consistency of the Binomial distribution with the prior Beta. The empirical 

study was carried out through a simulation using RStudio-1.1.463. 

 

2. Method 

 

2.1. Research Data 

The research data were simulation data generated by RStudio-1.1.463. Data generated using the 

Binomial distribution (m = 5, and m = 10) with prior Beta. The sample sizes selected were 50, 100, 

500, and 1000. These various sample sizes were used to prove whether the sample size had an effect 

on the characteristics studied. The simulation was carried out by selecting 3 pairs (𝛼, 𝛽) which had 

different variance, namely (1, 3), (10, 6), and (20, 24) with each of the variations, namely 0.0375, 

0.0138, 0, 0054. The pairs (𝛼, 𝛽) do not have a significant difference in variance because the variance 

of the beta distribution is not more than 1 and 0 <x <1. 

 

2.2. Bayes Method 

In the classical approach, the parameter 𝜃 is an unknown fixed quantity. Whereas in the Bayesian 

approach, 𝜃 is seen as a quantity whose variation is described by the probability distribution (called 

the prior distribution). It is a subjective distribution, based on a person's beliefs and formulated before 

data is retrieved. Then, the sample is taken from the population indexed 𝜃 and the prior distribution is 

adjusted according to this sample information. The adjusted prior is called the posterior distribution. 

This adjustment is made using the Bayes rule [10]. 

 

2.3. Estimator Characteristics 

An estimator is called best estimator if it has the following characteristics: 

1. Unbiased Estimator 

An estimator is unbiased if the mean of its sampling distribution is the true parameter value. That 

is, an estimator 𝑝̂ is unbiased if and only if 

𝐸(𝑝̂) = ∫ 𝑝̂ 𝑓(𝑝̂|𝑝) 𝑑𝑝̂ = 𝑝 

where 𝑓(𝑝̂|𝑝) is the sampling distribution of the estimator 𝑝̂ given the parameter 𝑝 [11]. 

 

2. Efficient Estimator 

Let 𝑝̂ be an unbiased estimator of a parameter 𝑝 in the case of point estimation. 𝑝̂ is called an 

efficient estimator of 𝑝 if and only if the variance of 𝑝̂ attains the Rao-Cramér lower bound. Let 

𝑋1, 𝑋2, … , 𝑋𝑛 be iid with common pdf 𝑓(𝑥; 𝑝) for 𝑝 ∈ Ω, and 𝑝̂ = 𝑢(𝑋1, 𝑋2, … , 𝑋𝑛) be a statistic 

with mean 𝐸(𝑝̂) = 𝐸[𝑢(𝑋1, 𝑋2, … , 𝑋𝑛)] = 𝑘(𝑝), then 

𝑉𝑎𝑟(𝑝̂) ≥
[𝑘′(𝑝)]2

𝑛 𝐼(𝑝)
 

If 𝑝̂ = 𝑢(𝑋1, 𝑋2, … , 𝑋𝑛) is an unbiased estimator of 𝑝, so that 𝑘(𝑝) = 𝑝, then the Rao-Cramér 

inequality becomes [12] 

𝑉𝑎𝑟(𝑝̂) ≥
1

𝑛 𝐼(𝑝)
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3. Consistent Estimator 

An estimator is consistent if the sample size (n) is enlarged to near infinity, the estimator value 

will tend to approach the population parameter value [1]. An estimator 𝑝̂ of 𝑝 based on a random 

sample of size n is said to be consistent if for any small 𝜀 > 0, then 

lim
𝑛→∞

𝑃(|𝑝̂ − 𝑝| < 𝜀) = 1 

lim
𝑛→∞

𝑃(|𝑝̂ − 𝑝| ≥ 𝜀) = 0 

The following two conditions are sufficient to define consistency [13]. 

1. lim
𝑛→∞

𝐸(𝑝̂) = 𝑝 

2. lim
𝑛→∞

𝑉𝑎𝑟(𝑝̂) = 0 

 

3. Result and Discussion 

In the Bayes estimator, the probability function 𝑓(𝑥𝑖, 𝑝) is expressed by the conditional probability 

function 𝑓(𝑥𝑖|𝑝), so that for 𝑋1, … , 𝑋𝑛 a random sample of a population with a Binomial distribution 

with parameter p can be written as follows: 

𝑋𝑖~𝐵𝑖𝑛(𝑚, 𝑝) ⟺ 𝑓(𝑥𝑖|𝑝) = {
(

𝑚

𝑥𝑖
) 𝑝𝑥𝑖(1 − 𝑝)𝑚−𝑥𝑖 , 𝑥𝑖 = 0,1,2, … , 𝑛 𝑖 = 1,2, … , 𝑛

0         , 𝑥𝑖 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
 

 

The prior distribution for 𝑋𝑖~𝐵𝑖𝑛(𝑚, 𝑝), 𝑖 = 1, 2, … , 𝑛 is 𝑝~𝐵𝑒𝑡𝑎(𝛼, 𝛽). So the probability function 

of the prior distribution is 

𝜋(𝑝) = {

Γ(𝛼 + 𝛽)

Γ(α)Γ(β)
𝑝𝛼−1(1 − 𝑝)𝛽−1, 0 < 𝑝 < 1

0                                              , 𝑝 𝑙𝑎𝑖𝑛𝑛𝑦𝑎

 

 

The likelihood function of 𝑋𝑖~𝐵𝑖𝑛(𝑚, 𝑝): 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝑝) = ∏ (
𝑚

𝑥𝑖
)

𝑛

𝑖=1

𝑝𝑥𝑖(1 − 𝑝)𝑚−𝑥𝑖 = [∏ (
𝑚

𝑥𝑖
)

𝑛

𝑖=1

] 𝑝∑ 𝑥𝑖
𝑛
𝑖=1 (1 − 𝑝)𝑚𝑛−∑ 𝑥𝑖

𝑛
𝑖=1  

 

Joint probability density function of 𝑋1, … , 𝑋𝑛 and p is: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑝) =  𝜋(𝑝) 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝑝) 

=
Γ(𝛼 + 𝛽)

Γ(α)Γ(β)
[∏ (

𝑚

𝑥𝑖
)

𝑛

𝑖=1

] 𝑝𝛼+∑ 𝑥𝑖
𝑛
𝑖=1 −1(1 − 𝑝)𝑚𝑛+𝛽−∑ 𝑥𝑖

𝑛
𝑖=1 −1 

 

Marginal function of 𝑋𝑖 is: 

𝑚(𝑥𝑖) = ∫ 𝑓(𝑥𝑖 , 𝑝) 𝑑𝑝

∞

−∞

 

= ∫
Γ(𝛼 + 𝛽)

Γ(α)Γ(β)
[∏ (

𝑚

𝑥𝑖
)

𝑛

𝑖=1

] 𝑝𝛼+∑ 𝑥𝑖
𝑛
𝑖=1 −1(1 − 𝑝)𝑚𝑛+𝛽−∑ 𝑥𝑖

𝑛
𝑖=1 −1

1

0

𝑑𝑝 

=
Γ(𝛼 + 𝛽)

Γ(α)Γ(β)
[∏ (

𝑚

𝑥𝑖
)

𝑛

𝑖=1

]  𝐵 [(𝛼 + ∑ 𝑥𝑖

𝑛

𝑖=1

) , (𝑚𝑛 + 𝛽 − ∑ 𝑥𝑖

𝑛

𝑖=1

)] 

 

The posterior distribution can be written as follows: 

𝜋(𝑝|𝑥𝑖) =
𝑓(𝑥𝑖, 𝑝)

𝑚(𝑥𝑖)
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=

Γ(𝛼 + 𝛽)
Γ(α)Γ(β)

[∏ (𝑚
𝑥𝑖

)𝑛
𝑖=1 ] 𝑝𝛼+∑ 𝑥𝑖

𝑛
𝑖=1 −1(1 − 𝑝)𝑚𝑛+𝛽−∑ 𝑥𝑖

𝑛
𝑖=1 −1

Γ(𝛼 + 𝛽)
Γ(α)Γ(β)

[∏ (𝑚
𝑥𝑖

)𝑛
𝑖=1 ]  𝐵[(𝛼 + ∑ 𝑥𝑖

𝑛
𝑖=1 ), (𝑚𝑛 + 𝛽 − ∑ 𝑥𝑖

𝑛
𝑖=1 )]

 

=
𝑝𝛼+∑ 𝑥𝑖

𝑛
𝑖=1 −1(1 − 𝑝)𝑚𝑛+𝛽−∑ 𝑥𝑖

𝑛
𝑖=1 −1

 𝐵[(𝛼 + ∑ 𝑥𝑖
𝑛
𝑖=1 ), (𝑚𝑛 + 𝛽 − ∑ 𝑥𝑖

𝑛
𝑖=1 )]

 

 

So, the Bayes estimator for p is: 

𝑝̂ = 𝐸(𝑝|𝑥𝑖) = ∫ 𝑝

1

0

𝜋(𝑝|𝑥𝑖) 𝑑𝑝 

= ∫ 𝑝

1

0

𝑝𝛼+∑ 𝑥𝑖
𝑛
𝑖=1 −1(1 − 𝑝)𝑚𝑛+𝛽−∑ 𝑥𝑖

𝑛
𝑖=1 −1

 𝐵[(𝛼 + ∑ 𝑥𝑖
𝑛
𝑖=1 ), (𝑚𝑛 + 𝛽 − ∑ 𝑥𝑖

𝑛
𝑖=1 )]

 𝑑𝑝 

=
𝛼 + ∑ 𝑥𝑖

𝑛
𝑖=1

𝑚𝑛 + 𝛼 + 𝛽
 

 

3.1. Estimator Characteristics 

The study of the characteristics of the Bayes estimator will be carried out theoretically and 

empirically. Based on the above calculations, the Bayes estimator for the p parameter in the Binomial 

distribution with prior Beta is 𝑝̂ = (𝛼 + ∑ 𝑋𝑖
𝑛
𝑖=1 )/(𝑚𝑛 + 𝛼 + 𝛽). Furthermore, the characteristics of 𝑝̂ 

will be evaluated, namely unbiased, efficient, and consistent. 

1. Unbiased 

The estimator 𝑝̂ is unbiased for p if 𝐸(𝑝̂) = 𝑝. The following shows whether 𝑝̂ is an unbiased 

estimator for p. 

𝐸(𝑝̂) = 𝐸 (
∑ 𝑋𝑖

𝑛
𝑖=1 + 𝛼

𝑚𝑛 + 𝛼 + 𝛽
) 

=
𝛼 + 𝑚𝑛𝑝

𝑚𝑛 + 𝛼 + 𝛽
 

Since 𝐸(𝑝̂) ≠ 𝑝, it can be conluded that 𝑝̂ is a biased estimator for p. However, asymptotically, 𝑝̂ is an 

unbiased estimator because lim
𝑛→∞

𝐸(𝑝̂) = 𝑝.  

lim
𝑛→∞

𝐸(𝑝̂) = lim
𝑛→∞

(
𝛼 + 𝑚𝑛𝑝

𝑚𝑛 + 𝛼 + 𝛽
) = lim

𝑛→∞
(

1

𝑚𝑛 + 𝛼 + 𝛽
) 𝛼 + lim

𝑛→∞
(

𝑚𝑛

𝑚𝑛 + 𝛼 + 𝛽
) 𝑝 = 0 + 𝑝 = 𝑝 

 

2. Efficient 

The estimator 𝑝̂ is said to be efficient if the variance of 𝑝̂ reaches the lower bound Rao-Cramer. Next 

we will show the variance of Bayes estimator as follows 

𝑣𝑎𝑟(𝑝̂) = 𝑣𝑎𝑟 (
∑ 𝑋𝑖

𝑛
𝑖=1 + 𝛼

𝑚𝑛 + 𝛼 + 𝛽
) 

Since 𝑣𝑎𝑟(𝑎𝑋) = 𝑎2𝑣𝑎𝑟(𝑋), so 

𝑣𝑎𝑟(𝑝̂) =
𝑣𝑎𝑟(∑ 𝑋𝑖

𝑛
𝑖=1 )

(𝑚𝑛 + 𝛼 + 𝛽)2
 

To solve for 𝑣𝑎𝑟(∑ 𝑋𝑖
𝑛
𝑖=1 ), it is necessary to first know the distribution of ∑ 𝑋𝑖

𝑛
𝑖=1 . Let 𝑌 = ∑ 𝑋𝑖

𝑛
𝑖=1 , 

then the probability density function of Y will be sought. 

𝑋𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚, 𝑝) 

Let: 𝑌 = ∑ 𝑋𝑖
𝑛
𝑖=1  

𝑀𝑌(𝑡)   = 𝐸(𝑒𝑡𝑌) = 𝐸(𝑒𝑡 ∑ 𝑋𝑖
𝑛
𝑖=1 ) 

= [𝑀𝑋(𝑡)]𝑛, since 𝑋𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚, 𝑝) 
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= {[(1 − 𝑝) + 𝑝𝑒𝑡]𝑚}𝑛 

= [(1 − 𝑝) + 𝑝𝑒𝑡]𝑚𝑛 

𝑌~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚𝑛, 𝑝) 

𝑓(𝑦) = (
𝑚𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)𝑚𝑛−𝑥 

So 𝑣𝑎𝑟(∑ 𝑋𝑖
𝑛
𝑖=1 ) = 𝑚𝑛𝑝(1 − 𝑝), then 

𝑣𝑎𝑟(𝑝̂) =
𝑣𝑎𝑟(∑ 𝑋𝑖

𝑛
𝑖=1 )

(𝑚𝑛 + 𝛼 + 𝛽)2
=

𝑚𝑛𝑝(1 − 𝑝)

(𝑚𝑛 + 𝛼 + 𝛽)2
 

 

It can be seen that the variance of 𝑝̂ is 
𝑚𝑛𝑝(1−𝑝)

(𝑚𝑛+𝛼+𝛽)2, then the Rao-Cramer lower bound will be sought as 

follows. 

ln 𝑓(𝑥|𝑝)           = ln (
𝑚

𝑥
) + 𝑥 ln 𝑝 + (𝑚 − 𝑥) ln(1 − 𝑝) 

𝜕 ln 𝑓(𝑥|𝑝)

𝜕𝑝
       =

𝑥

𝑝
−

𝑚 − 𝑥

1 − 𝑝
 

(
𝜕 ln 𝑓(𝑥|𝑝)

𝜕𝑝
)

2

   = (
𝑥

𝑝
−

𝑚 − 𝑥

1 − 𝑝
)

2

 

=
(𝑥 − 𝑚𝑝)2

𝑝2(1 − 𝑝)2
 

𝑣𝑎𝑟(𝑋) = 𝐸(𝑋 − 𝐸(𝑋))
2
 = 𝐸(𝑋 − 𝑚𝑝)2 = 𝑚𝑝(1 − 𝑝) 

𝐼(𝑝) = 𝐸 (
𝜕 ln 𝑓(𝑥|𝑝)

𝜕𝑝
)

2

 

= 𝐸 (
(𝑥 − 𝑚𝑝)2

𝑝2(1 − 𝑝)2) 

=
𝑣𝑎𝑟(𝑋)

𝑝2(1 − 𝑝)2
 

=
𝑚𝑝(1 − 𝑝)

𝑝2(1 − 𝑝)2
 

=
𝑚

𝑝(1 − 𝑝)
 

 

𝐻𝐵 =
1

𝑛 𝐼(𝑝)
=

1

𝑛 
𝑚

𝑝(1 − 𝑝)

=
𝑝(1 − 𝑝)

𝑚𝑛
 

Since the variance of 𝑝̂ doesn’t reach the lower bound Rao-Cramer, it can be concluded that 𝑝̂ is an 

inefficient estimator. 

 

3. Consistent 

The estimator 𝑝̂ is consistent if lim
𝑛→∞

𝑣𝑎𝑟(𝑝̂) = 0. The following shows whether 𝑝̂ is a consistent 

estimator. 

lim
𝑛→∞

𝑣𝑎𝑟(𝑝̂) = lim
𝑛→∞

𝑚𝑛𝑝(1 − 𝑝)

(𝑚𝑛 + 𝛼 + 𝛽)2
 

= lim
𝑛→∞

𝑚𝑛𝑝 − 𝑚𝑛𝑝2

𝑚2𝑛2 + 2𝑚𝑛𝛼 + 2𝑚𝑛𝛽 + 2𝛼𝛽 + 𝛼2 + 𝛽2
 

= lim
𝑛→∞

𝑚𝑛𝑝 − 𝑚𝑛𝑝2

𝑛2

𝑚2𝑛2

𝑛2 +
2𝑚𝑛𝛼

𝑛2 +
2𝑚𝑛𝛽

𝑛2 +
2𝛼𝛽
𝑛2 +

𝛼2

𝑛2 +
𝛽2

𝑛2

 



ICASMI 2020
Journal of Physics: Conference Series 1751 (2021) 012019

IOP Publishing
doi:10.1088/1742-6596/1751/1/012019

6

=
0

𝑚2
= 0 

Since lim
𝑛→∞

𝑣𝑎𝑟(𝑝̂) = 0, it can be concluded that 𝑝̂ is a consistent estimator. 

 

3.2. Simulation 

Based on 3 pairs (α, β), sample size (n), and number of experiments (m), it will be seen the effect of 

(α, β), n, and m on bias, variance and MSE value. Based on Table 1 and Figure 1, it can be seen that 

when 5 independent trials are carried out with (𝛼, 𝛽) = (1,3), (10,6) will produce a bias value that is 

getting smaller / closer to 0 when the sample size is enlarged. Meanwhile, when (𝛼, 𝛽) = (20, 24) will 

produce in a fluctuating bias value. When conducted 10 independent trials, the three pairs (𝛼, 𝛽) will 

produce a fluctuating bias value. So it can be concluded that the Bayesian estimator is asymptotically 

unbiased when it is carried out 5 independent trials with (𝛼, 𝛽)= (1, 3) and (10, 6), and is biased for 

the others. 

 

Table 1. The bias value of the Bayes estimator. 

𝛼 𝛽 n 
Bias 

m=5 m=10 

1 3 

50 0,001014 0,000138 

100 0,000942 0,000554 

500 0,00028 3,3E-05 

1000 4,6E-05 7,61E-05 

10 6 

50 0,001154 0,00017 

100 0,001092 0,000172 

500 0,000309 0,000488 

1000 0,000123 0,000224 

20 24 

50 2,84E-06 0,001516 

100 0,000318 5,46E-06 

500 0,000618 5,92E-05 

1000 0,000262 9,04E-05 
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Figure 1. Histogram of the bias value on several sample sizes and parameter values. 

 

Based on Table 2 and Figure 2, for all pairs (𝛼, 𝛽) will result in a smaller variance value when the 

sample size and trials is enlarged. When the pairs (𝛼, 𝛽) fluctuate, the variance values tend not to 

change significantly. So it can be concluded that the Bayesian estimator is an efficient estimator. 

 

Table 2. Variance of the Bayes estimator. 

𝛼 𝛽 n 
Variance 

m=5 m=10 

1 3 

50 0,000774 0,000328 

100 0,000356 0,000194 

500 7,37E-05 3,74E-05 

1000 4,11E-05 1,9E-05 

10 6 

50 0,000864 0,000429 

100 0,000473 0,000232 

500 9,58E-05 4,67E-05 

1000 4,66E-05 2,45E-05 

20 24 

50 0,000711 0,000426 

100 0,00041 0,000222 

500 9,27E-05 4,99E-05 

1000 4,82E-05 2,39E-05 
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Figure 2. Histogram of Bayes estimator’s variance on several sample sizes and parameter values. 

 

Based on Table 3 and Figure 3, for all pairs (𝛼, 𝛽) the MSE value will be smaller when the sample 

size and trials is enlarged. When the pairs (𝛼, 𝛽) fluctuate, the MSE values tend not to change 

significantly. So it can be concluded that Bayes estimator is a consistent estimator. 

 

Table 3. MSE value of Bayes estimator. 

𝛼 𝛽 n 
MSE 

m=5 m=10 

1 3 

50 0,000775 0,000328 

100 0,000357 0,000195 

500 7,38E-05 3,74E-05 

1000 4,11E-05 1,9E-05 

10 6 

50 0,000865 0,000429 

100 0,000474 0,000232 

500 9,59E-05 4,7E-05 

1000 4,66E-05 2,46E-05 

20 24 

50 0,000711 0,000428 

100 0,00041 0,000222 

500 9,31E-05 4,99E-05 

1000 4,83E-05 2,39E-05 
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Figure 3. Histogram of MSE value Bayes estimator on several sample sizes and parameter values. 

 

4. Conclusion 

The result of this study show that the Bayes estimator in the Binomial distribution with prior Beta is 

𝑝̂ =
𝛼+∑ 𝑋𝑖

𝑛
𝑖=1

𝑚𝑛+𝛼+𝛽
 which theoretically has asymptotically unbiased and consistent, but not efficient. But 

empirically, Bayes estimator is asymptotically unbiased, efficient, and consistent estimator. 
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