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Abstract. Inspired by the study of metabolic energy, a new synaptic plasticity model was 
established based on postsynaptic membrane potential and membrane current density. In this 
model, the change of synaptic weights is expressed by the difference between the resting 
energy state and firing energy state. The simulation results in L5 pyramidal neurons show that 
the proposed model can reproduce the triplet and quadruplet experiments of synaptic plasticity, 
which indicates that our model is feasible. The results of this paper will help to expand the 
synaptic plasticity model and the understanding of learning and memory from the perspective 
of energy. 
Keywords: Homosynaptic plasticity; Neural Computation; Metabolic energy; Pyramidal 
neuron. 

1. Introduction 
The variables used by the traditional models of synaptic plasticity generally include pre and 
postsynaptic spike frequency[1], pre and postsynaptic spike timing[2], presynaptic spike and 
postsynaptic membrane potential[3], and Ca2+ concentration[4‒5]. These models require presynaptic 
spike data directly or indirectly. It is not clear whether a model of synaptic plasticity can be 
established only by postsynaptic variables. 
The human brain accounts for only 2% of the body's total weight, but consumes 20% of its resting 
metabolic energy[6,7]. In addition to the costs associated with synaptic integration and transmission, 
experimental evidence suggests that synaptic plasticity itself is a costly process[8‒11]. Growing evidence 
suggests that metabolic energy may be a unifying principle governing neuronal activities[12‒15]. Thus, 
the study of synaptic plasticity from the perspective of metabolic energy has attracted more and more 
attention[16]. Inspired by metabolic energy as a unified rule, we attempt to establish herein a model of 
synaptic plasticity based on postsynaptic membrane potential and membrane current density. 

2. Synaptic Plasticity Model 
Maintaining a constant transmembrane ion gradient is essential for neurons to function normally and 
even survive. Neurons have potential energy similar to batteries due to the existence of a 
transmembrane ion gradient[14]. We call the potential energy of neurons in the resting state the resting 
energy state. Activities, such as action potential, input integration, and synaptic transmission, will 
change the potential energy of the neuron, leading to a new energy state, which is referred to as the 
firing energy state. To maintain normal information processing ability, neurons can restore the firing 
energy state to the resting energy state through active transport by expending metabolic energy. We 
assumed that synaptic plasticity might function similarly to, or be a manifestation of, active transport 
and be closely related to changes in the energy state of neurons. To restore the resting energy state, 
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when the firing energy state is larger than the resting energy state, the synaptic strength weakens, thus 
presenting as LTD. When the firing energy state is less than the resting energy state, the synaptic 
strength is enhanced, thus presenting as LTP. When the firing energy state is close to the resting 
energy state, the synaptic weight remains unchanged. The idea can be described by the following 
equation 

௝ܹ ൌ ௝ܧሺܣ
௥ െ  ௝ሻ                                                                       (1)ܧ

where ௝ܹ is the weight of synapse ݆, ܣ is a scaling factor, ܧ௝
௥ and ܧ௝ are the resting and firing energy 

states at the unit membrane of post-synapse ݆, respectively. ܧ௝
௥ and ܧ௝ are all dimensionless variables. 

 ௝ represents the accumulated energy required when the membrane voltage is not below the firingܧ	
threshold voltage, while ܧ௝

௥ represents the accumulated energy when the membrane voltage is lower 
than the firing threshold voltage, so the two energy states can not be changed at the same time. When 
the membrane voltage is lower than the firing threshold voltage, ܧ௝ remains unchanged, while when 
the membrane voltage is higher than the firing threshold voltage, ܧ௝

௥  remains unchanged. The 
differential expression of equation 1 is 

ௗௐೕ

ௗ௧
ൌ ܣ ൬

ௗாೕ
ೝ

ௗ௧
െ

ௗாೕ
ௗ௧
൰                                                                (2) 

When the membrane voltage is lower than the firing threshold voltage, 
ௗாೕ
ௗ௧

ൌ 0 because ܧ௝ remains 

unchanged. Similarly, when the membrane voltage is above the firing threshold voltage, 
ௗாೕ

ೝ

ௗ௧
ൌ 0 

because ܧ௝
௥ remains unchanged. 

To calculate the energy states ܧ௝
௥  and ܧ௝  in equations 1 and 2, one of the simplest and most 

straightforward methods is to describe the energy states by the product of postsynaptic membrane 
voltage ݒ௠ and postsynaptic membrane current density ܫ௠. If the energy state needs to be restored to 
the resting state, the postsynaptic membrane voltage should reflect the difference between the 
intracellular potential and resting potential rather than the difference between the intracellular potential 
and extracellular potential expressed by ݒ௠. Therefore, we defined a driving voltage ௝݂ሺݒ௠ሻ (figure 1a) 
to replace ݒ௠. 

௝݂ሺݒ௠ሻ ൌ ௠ݒ|௠ሻݒሺ݊݃݅ݏ െ ௟|                                                       (3) 

where variable ݒ௠ is the postsynaptic voltage, ௟ is a parameter called the resting threshold voltage, 
 ௠ and ௟ are dimensionless with mV. In general, ௟ is less than the resting potential and larger than orݒ
equal to the minimum potential in pyramidal neurons. The direction of the driving voltage ௝݂ሺݒ௠ሻ is 
the same as that of ݒ௠, and the amplitude is the absolute value of the difference between ݒ௠ and ௟. 
We also defined the driving current ݃௝ሺܫ௠ሻ: when the postsynaptic membrane current density ܫ௠ does 
not exceed a certain threshold ܫ௠௔௫, the driving current is equal to ܫ௠, but when it exceeds ܫ௠௔௫, the 
driving current decreases exponentially (figure 1b). To confer the homeostatic feature to our plasticity 
model[17], we adopt the research results of intrinsic homeostatic plasticity for the design of the driving 
current[18,19]. The idea of constructing a driving current is to make the functional relationship between 
݃௝ሺܫ௠ሻ and ܫ௠ similar to figure 3c in Debane et al.[18]. Electric power represents the change in energy 
per unit time; as such, the instantaneous change in the resting energy state and firing energy state in 

equation 2 (
ௗாೕ

ೝ

ௗ௧
	and	

ௗாೕ
ௗ௧

) can be expressed by the product of driving voltage and driving current. 

To make our model homeostatic, we constructed the following driving current (figure 1b) 

݃௝ሺܫ௠ሻ ൌ ൜
|௠ܫ|			,௠ܫ ൏ ௠௔௫ܫ

௠ሻܫሺ݊݃݅ݏ௠௔௫ܫ expሾܦሺܫ௠௔௫ െ ,	௠|ሻሿܫ| 					 |௠ܫ| ൒ 	௠௔௫ܫ
                    (4) 

where ܫ௠ is the current density at the postsynaptic membrane, ܫ௠௔௫ represents the maximum current 
density of the postsynaptic membrane, ܫ௠  and ܫ௠௔௫  are dimensionless with pA/μm2. Parameter ܦ 
denotes damping factor with 0 ൑ ܦ ൑ 1. If |ܫ௠| ൏  ;௠ܫ ௠ሻ is equal toܫ௠௔௫, then the driving current ݃௝ሺܫ
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if |ܫ௠| ൒ ௠௔௫ܫ , then the amplitude of ݃௝ሺܫ௠ሻ  decreases exponentially, consistent with the recent 
opinions[18,19]. Equation 2 representing the change in synaptic strength over time with the driving 
voltage and driving current described above is as follows 

ௗௐೕ

ௗ௧
ൌ ௛	ሺൣܣ െ ௠ሻݒ ௝݂ሺݒ௠ሻ݃௝ሺܫ௠ሻ െሺݒ௠ െ 	௛ሻ ௝݂ሺݒ௠ሻ݃௝ሺܫ௠ሻ൧                       (5) 

combined with the hard bounds 0.0002 ൑ ௝ܹ/ ௜ܹ௡௜ ൑ 4 . Here ௜ܹ௡௜  is the initial weight. ሺxሻ 
represents Heaviside function, ሺݔሻ ൌ 1 for ݔ ൒ 0 and ሺݔሻ ൌ 0 for ݔ ൏ 0. 	௛  is called the firing 
threshold voltage, which is a dimensionless parameter with the unit of mV. ሺ	௛ െ ௠ሻݒ ௝݂ሺݒ௠ሻ݃௝ሺܫ௠ሻ 

is the time derivative term of the resting energy state, namely 
ௗாೕ

ೝ

ௗ௧
 in equation 2. ሺݒ௠ െ

	௛ሻ ௝݂ሺݒ௠ሻ݃௝ሺܫ௠ሻ denotes the derivative of the firing energy state, that is 
ௗாೕ
ௗ௧

. 

Equation 5 can now be used to more explicitly analyze the instantaneous synaptic strength change 
under different postsynaptic membrane voltage and membrane current density (figure 1c). ሺݒ௠ െ

	௛ሻ ൌ 0 and ሺݒ௠ െ 	௛ሻ ൌ 1 for ݒ௠ ൒ 	௛, thus equation 5 is reduced to 
ௗௐೕ

ௗ௧
ൌ െܣ ௝݂ሺݒ௠ሻ݃௝ሺܫ௠ሻ. 

In this case, if the membrane voltage is in the same direction as the membrane current density, then the 
synaptic strength will decrease (S, T); otherwise, the synaptic strength will increase (E, F). On the 

other hand, if ݒ௠ ൏ 	௛, ሺ	௛ െ ௠ሻݒ ൌ 1 and ሺݒ௠ െ 	௛ሻ ൌ 0,	then Equation (5) evolves into 
ௗௐೕ

ௗ௧
ൌ

ܣ ௝݂ሺݒ௠ሻ݃௝ሺܫ௠ሻ. At this point, if the membrane voltage and membrane current density are in the same 
direction, then the synaptic strength increases (D); if they are in the opposite direction, then the 
synaptic strength decreases (R). 

 

Figure 1. Illustration of the model. 
(a) Relationship between postsynaptic membrane potential ݒ௠  and driving potential ௝݂ሺݒ௠ሻ . The 
farther ݒ௠ was from the driving threshold potential ௟, the larger the amplitude of the driving voltage 
(black solid line) would be, but ௝݂ሺݒ௠ሻ had the same sign as ݒ௠ . A transformation of the driving 
voltage (the dashed red line) stayed the same for ݒ௠ ൏ 	௛ and opposite sign occurred for ݒ௠ ൒ 	௛. (b) 
Relationship between postsynaptic membrane current density ܫ௠  and driving current ݃௝ሺܫ௠ሻ . The 
amplitude of ݃௝ሺܫ௠ሻ decreased exponentially if the amplitude of ܫ௠  was larger than the allowable 
maximum current density ܫ௠௔௫. (c) The instantaneous change in the synaptic strength under different 
postsynaptic membrane potential and membrane current density. The synaptic strength increased in D, 
E, and F but decreased in R, S, and T. 

3. Reproduction of Triplet and Quadruplet Experiments 

3.1. Model Parameters 
In addition to the two variables of postsynaptic membrane voltage and postsynaptic membrane current 
density, our model includes five parameters: resting threshold voltage ௟, maximum membrane current 
density ܫ௠௔௫ and damping factor D, scaling factor ܣ and firing threshold voltage 	�. In the choice of 
model parameters, our goal is to make a set of parameters suitable for as many stimulation protocols as 
possible. The five model parameters are all determined by trial and error methods. The first is to 
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estimate the range of parameters according to their physical meaning, such as ௟ should be below ‒60 
mV, 	௛ should be between ‒60 and ‒50 mV, and so on. Then fine-tuning is done manually to make 
the simulation results match the experimental results as well as possible. We, therefore, simulated 
different parameters and determined four general model parameters by comparing the simulation 
results with the experimental data, that is, ܣ ൌ 0.0625, ௟ ൌ	‒68.5, 	௛ ൌ ‒55 mV,.D = 0.05, and 
௠௔௫ܫ ൌ 3 pA/μm2. 
All simulations in this paper were carried out on the Brian2 neuron simulator in Python[20] based on 
the L5 pyramidal neuron models developed by Bono and Clopath[21]. 

3.2. Triplet Protocol 
Similar to the paired protocol, each distal and proximal compartment was connected to a synapse in 
the apical dendrite of the L5 pyramidal neuron (figure 2a). A current pulse of 1 nA lasting 3 ms was 
injected into the soma of postsynaptic neurons to induce a postsynaptic spike. The initial weight of all 
synapses was 0.5. To simulate the experimental protocol of Wang et al.[22], the weight change was also 
multiplied by 12. The first triplet protocol (figure 2b) consisted of five sets of three spikes that were 
repeated at a given frequency of 1 Hz. Each triplet consisted of two presynaptic spikes and one 
postsynaptic spike. The time differences ሺ∆tଵ, ∆tଶሻ  were (5,-5), (10,-10), (15,-5), and (5,-15) 
respectively. The second triplet protocol (figure 2c) also included five sets of three spikes that repeated 
with a frequency of 1 Hz. The only difference from the first protocol was that each triplet consisted of 
a presynaptic spike and two postsynaptic spikes. The time differences between the two pairs ሺ∆tଵ, ∆tଶሻ 
were set as (-5,5), (-10,10), (-5,15), and (-15,5). 

3.3. Quadruplet Protocol 
This protocol consisted of five quadruplets at a frequency of 1 Hz (figure 2d). A post–pre pair with a 
time difference of ∆tଵ ൌ െ5	ms was followed by a pre–post pair with a time difference of ∆tଶ ൌ 5	ms 
after time ܶ. In this case, ܶ was set to positive. When ܶ is negative, a pre–post pair with a time 
difference of ∆tଵ ൌ 5	ms was followed by a post-post pair with a time difference of ∆tଶ ൌ െ5ms after 

time ܶ. Formally, ܶ was defined by ܶ ൌ
ቀ௧మ
೛ೝ೐ା௧మ

೛೚ೞ೟ቁ

ଶ
െ	

ቀ௧భ
೛ೝ೐ା௧భ

೛೚ೞ೟ቁ

ଶ
. This protocol was repeated with 

various ܶ (-100, -80, -60, -50, -40, -30, -25, -20, -15, -10, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100). 

3.4. Simulation Results 
To prove the effectiveness of our model, we considered a hippocampal culture data set, which consists 
of triplet and quadruplet protocols (figure 2b,c). The mean weight of the proximal synapses in our 
model reproduces the triplet experimental results (figure 6c in Wang et al. [22], Table 2 in Pfister and 
Gerstner[2]), whereas the mean weight of the distal synapses is significantly different from the 
experimental results. In the triplet experiment of Wang et al.[22], the location of the stimulus in the 
dendritic branch was not shown, while the simulation results of the proximal stimulation are quite 
consistent with the experimental results (figure 6c in Wang et al. [22]，table 2 in Pfister and Gerstner 
[2]), so we judge that the stimulus location in the triplet experiment of Wang et al[22] is at the proximal 
site. In the quadruplet simulations (figure 2d), the average weight of all synapses at the proximal and 
distal ends of the dendritic branches can well fit the experimental results (figure 5 in Wang et al. [22]，
table 2 in Pfister and Gerstner[2]). 
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Figure 2 Reproducing the triplet and quadruplet experiments. 
Each protocol was repeated 60 times with a frequency of 1Hz for apical compartments. Black bars and 
dots represented the experimental data from Wang et al.[22] and table 2 in Pfister and Gerstner[2]. 
Magenta bars: average synaptic weights for proximal compartments, cyan bars: average synaptic 
weights for distal compartments. (a) Proximal (magenta) and distal (cyan) locations on a thin apical 
branch of the detailed neuron model. (b) Synaptic strength changes corresponding to different time 
intervals under the four pre-post-pre protocols. Each protocol consisted of two presynaptic spikes and 
one postsynaptic spike characterized by ∆tଵ ൌ t୮୭ୱ୲ െ tଵ

୮୰ୣ and ∆tଶ ൌ t୮୭ୱ୲ െ tଶ
୮୰ୣ where tଵ

୮୰ୣ and tଶ
୮୰ୣ 

were the first and second presynaptic spikes of the triplet. (c) Synaptic strength changes corresponding 
to different time intervals under the four-post-pre-post protocols. Each protocol consisted of one 
presynaptic spike and two postsynaptic spikes. In this case, ∆tଵ ൌ tଵ

୮୭ୱ୲െt୮୰ୣ and ∆tଶ ൌ tଶ
୮୭ୱ୲ െ t୮୰ୣ 

where tଵ
୮୭ୱ୲ and tଶ

୮୭ୱ୲ were the first and second postsynaptic spikes of the triplet. (d) Synaptic weight 
change as a function of a delayed time ܶ under the quadruplet protocol. Magenta line corresponded to 
the average synaptic weights of proximal compartments, cyan line corresponded to the average 
synaptic weights of distal compartments, and blackline corresponded to the average synaptic weights 
of all compartments. The gray shaded regions represented the standard deviation of synaptic strength 
for all compartments. 

4. Conclusion 
We proposed a synaptic plasticity model inspired by the metabolic energy of postsynaptic neurons. 
The model suggests that to ensure the survival and normal physiological function of neurons, their 
energy state should be maintained at a normal resting energy state level. Neurons recover to the resting 
state by the active transport mechanism. The active transport mechanism moves ions back across the 
neuronal membrane against their electrochemical gradients through ion pumps (e.g., sodium-
potassium pump) distributed on the cell membrane, which needs to be driven directly by metabolic 
energy (e.g., by the hydrolysis of ATP). Synaptic plasticity is associated with the degree of deviation 
of energy states. If the firing energy state is larger than the resting energy state, then the synaptic 
strength weakens; if the firing energy state is less than the resting energy state, then the synaptic 
strength strengthens; and if the firing energy state is relatively close to the resting energy state, then 
the synaptic weight remains unchanged. Simulation indicates that our results are in good agreement 
with the experimental results of triplet and quadruple synaptic plasticity. Our study will help to expand 
the synaptic plasticity model and the understanding of learning and memory from the perspective of 
energy. 
Our model has been tested in a single pyramidal neuron and the results show that the model is in good 
agreement with the experimental results. However, it is not clear whether the model can be extended 
to the dynamics research for neural networks. This is a key point of our future research work. 
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