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Abstract. This paper presents the application of the Darcy and Richards equations, describing 

water flow and dynamic changes of the water content in porous medium, for numerical modeling 

of water capillary rise in the selected building materials. The numerical simulations of 

unsaturated and variably saturated water flow in the studied materials were performed in 

FEFLOW commercial computational software, by DHI-Wasy, Germany. The developed model 

represented a wall section constructed of aerated concrete blocks, covered by mortar prepared 

using blended cement with biomass ash addition. The physical and water retention characteristics 

of the modeled materials were based on the previously performed laboratory measurements and 

literature research. The assumed initial conditions reflected air dry wall with limited moisture, 

while the boundary conditions allowed modeling of capillary rise due to direct contact of the 

studied materials with water with variable pressure head. The results of numerical calculations 

allowed observation of the time-dependent changes in the moisture content of building materials 

in relation to their physical properties and variable boundary conditions. 

1. Introduction 

Numerical modeling of saturated, variably saturated and unsaturated water flow in soils with various 

physical and hydraulic characteristics, based on finite elements method (FEM), is highly useful in many 

branches of science and engineering [1-4]. Such simulations allow the prediction of the groundwater 

flow in aquifers, water balance of catchment or aquifer, dynamics of infiltration and capillary rise in 

unsaturated zone of soil or artificial earthen liner, water availability for plants, efficiency of wells, 

irrigation and drainage, pollutants transport originated from point and surface sources, heat transport [5-

7]. The popularity of numerical simulation in the above mentioned cases is highly related to costly and 

time consuming in-situ measurements and monitoring. 

The simulations of moisture transfer in porous construction materials and barriers have been 

conducted for many years. Within this topic, several models of water transport have been elaborated [8-

10]. The most popular models use various physical quantities as driving forces of water transportation. 

The Fick’s law [11], Luikov model [9], Künzel model [12] and Liu model [13] should be mentioned 

among them. Modeling of water transport in building barriers allows the prediction of the building 

behavior prone to the water influence that may appear from the environment [14-17]. It enables to 

forecast the building areas threatened with destruction by the negative impact of water presence, such 

as mechanical deterioration [18, 19] or biological infestation [20,21]. 
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Generally, development and applications of finite elements numerical models of water flow in porous 

media consist of three phases: 1) preprocessing, at which geometrical model of the modeled domain is 

built, discretized into finite elements/volumes, assignment of input data, covering the time related data 

and soil hydraulic characteristics, determination of boundary conditions (see figure 1, figure 2) solving 

the simulation using the solver; and 3) postprocessing of the simulation results [7,22,23]. Thus, field 

and laboratory measurements in most studies are required only at the stage of data gathering to prepare 

the input data, in the simplest cases mainly saturated and unsaturated hydraulic conductivity as well as 

the water retention characteristics. The required water conductivity characteristics may be measured in-

situ or under the laboratory conditions by means of several available methods, mainly based on constant 

and falling head permeameters. On the other hand, the water retention characteristics, necessary to 

simulate the unsaturated flow in porous medium may be obtained during laboratory measurements using 

several available techniques, including extraction pressure chambers with ceramic plates, sand or 

sand/kaolin boxes [24,25]. 

 

Figure 1. Simplified scheme of the FEM model of saturated, variably saturated or unsaturated water 

flow in porous medium solving the Darcy and Richards equations. 

2. Materials and methods 

The presented 2D numerical modeling of capillary rise of water inside the multi-layered wall consisting 

of aerated concrete blocks, cement mortar, reference coating/plaster mortar and repair coating/plaster 

mortar utilizing biomass ash as sustainable admixture was performed in the FEFLOW 6.0 commercial 

simulation software, Wasy-DHI, Germany, especially popular in soil and environmental science [4, 26-

28] but also successfully tested in the calculation of water flow and heat transfer through building 

materials [29, 30]. The developed model consisted of 5130 elements and 2669 nodes and reflected the 

cross section of the standard aerated concrete wall of dimensions 0.30 m × 0.79 m. Our calculations 

were performed in two hypothetical scenarios, with two different boundary conditions, for two 

compositions of the modeled wall: 1) wall consisting of aerated concrete block connected with cement 

mortar and covered by the reference plaster mortar, 2) the same construction of the wall but one layer 

(left) of reference plaster mortar replaced by repair mortar containing biomass ash. Figure 2 shows the 

developed FEM model of the tested wall. 

 Numerical simulations of the 2D water flow in variably saturated porous media in FEFLOW were 

based on the standard forms of Darcy’s and Richards’ equations [31-33]: 

 𝑞𝑖 = −𝐾𝑖𝑗
𝜕ℎ

𝜕𝑥𝑗
 (1) 

 
𝜕𝜃

𝜕𝑡
= −

𝜕𝑞𝑖

𝜕𝑥𝑖
∓ 𝑄 (2) 
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where: qi –water flux vector, (m/s); h – water pore pressure head, (m); t – time, (s); Kij – hydraulic 

conductivity tensor, i, j = 1, 2, (m/s); θ – volumetric water content, (m3/m3), Q – sink or source term, 

(1/s). 

 

Figure 2. Finite elements mesh of developed 2D numerical model, with marked reference points. 

 

The van Genuchten [34] model of water retention curve was applied to the simulations in FEFLOW 

in the form: 

 𝑆𝑎 =
𝑆𝑠−𝑆𝑟

[1+(𝐴ℎ)𝑛]𝑚
+ 𝑆𝑟 (3) 

where: Sa – actual degree of saturation, (-); Ss – saturated degree of saturation, assumed Ss=1, (-); Sr – 

residual degree of saturation, (-); h – water pore pressure head, (m);  – fitting parameter, (1/m); n, m – 

dimensionless fitting parameters: m = 1 – n-1. 

Hydraulic conductivity coefficient of unsaturated soils K was calculated according to the formula by 

van Genuchten [34]: 

 𝐾 = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1

𝑚)
𝑚

]
2

 (4) 

where: Ks – coefficient of saturated hydraulic conductivity, (m/s); l – fitting parameter: l = 0.5 [7, 18], 

(-); Se – dimensionless effective saturation understood as: 

 𝑆𝑒 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
 (5) 

where:  – volumetric water content, (m3/m3), r – residual volumetric water content, (m3/m3); s – 

saturated volumetric water content, (m3/m3).  

 The required input data covering the hydraulic and retention characteristics of the applied building 

materials i.e. coefficients of saturated hydraulic conductivity, saturated and residual volumetric water 

contents as well as water retention curve fitting parameters, were based on the previous research and are 

presented in table 1 [30, 35, 36]. The maximum available saturation for saturated condition was assumed 

as S=1, the saturated volumetric water content s was assumed as equal to porosity. 

The required initial conditions for time t=0 covered the uniform value of volumetric water content 

θ=0.05 [m3/m3]. The two types of the boundary conditions were assumed in the presented model, to 

reflect two possible ways of water entrance, through the bottom of the wall and through the section of 
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its side. Thus, bottom boundary condition Head=0 m at the bottom of modeled domain and side 

boundary condition Head=0 m at length of approx. 5 cm were assumed for both tested variants. The 

duration of the simulation amounted to one year, i.e. 365 days. 

 

 

Table 1. Water transport and retention characteristics of materials assumed to modeling. 

Material Ks 

(m/s) 

θs 

(m3/m3) 

θr 

(m3/m3) 

Water retention curve 

fitting parameters 

A (1/m) n (-) 

Aerated concrete 600 6.0E-7 0.349 0.0025 1.980 1.164 

Cement mortar 1.65E-11 0.220 0.0025 0.149 1.019 

Reference mortar 3.79E-10 0.336 0.0025 0.0237 1.431 

Repair mortar containing ash 8.13E-11 0.435 0.0025 0.276 1.389 

3. Results 

Figure 3 presents the calculated distributions of porous media saturation for three selected time steps, 

i.e. 100, 200 and 365 days, for both assumed sections of the wall with bottom boundary condition, 

allowing capillary rise through the bottom edge of the model. The application of the repair mortar 

containing biomass ash on time-related distribution of saturation is clearly visible, water capillary rise 

in this layer is definitely slower than in the reference plaster and in aerated concrete, which resulted in 

asymmetric distribution of material moisture, in relation to the reference wall. 

 

Figure 3. Modeled distribution of 

dimensionless porous materials 

saturation by water supplied through the 

bottom edge of the model: a) wall with 

repair mortar containing ash, b) wall 

with reference mortar. 

 

The results discussed above are also visible in the graphs presenting the time-related changes of 

material saturation determined in reference points No. 1-3 (points No. 4-9 were excluded from the 

comparison) presented in Figure 4. The obtained results show that the application of the ash-based repair 
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mortar clearly affected the saturation determined in reference point No. 3 (for the reference mortar, the 

curves representing saturation in points No. 2 and 3 are almost identical). Nearly full saturation of porous 

medium in point No. 3 located in the reference cement mortar may be observed close to the final duration 

of simulation, value of 0.9 was reached after approx. 150 days. At the final time step of simulation, the 

saturation of repair mortar in point No.3 reaches the value of approx. 0.12. 

 

Figure 4. Time-related saturation of 

porous medium calculated in reference 

points presented in figure 3. 

 

The results of saturation obtained for the second tested scenario, i.e. for both assumed sections of the 

wall with side boundary condition allowing capillary rise through the approx. 5 cm long bottom section 

of the left edge of the modeled domain, are presented in Figure 5 for three selected time steps. The 

determined time-related distribution of saturation shows clearly that the application of the repair mortar 

containing ash significantly limits the range of capillary rise in the modeled wall during the assumed 

duration of simulation. 

 

 

Figure 5. Modeled distribution of 

dimensionless porous materials 

saturation by water supplied through the 

bottom section of the left edge of the 

model: a) wall with the repair mortar 

containing ash, b) wall with the 

reference mortar. 
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Figure 6 presents the time-related changes of material saturation determined in reference points No. 

2 and 5 (again, points with no observed significant changes in saturation by water were excluded from 

the comparison). It is clearly visible that the changes in saturation in reference points No. 2 and 5 were 

noted only for the reference coating/plaster mortar, the value of dimensionless saturation reached the 

level >0.9 after approx. 25 days. No changes in saturation were observed in these points for the wall 

covered by the repair mortar containing biomass ash. 

 

 

Figure 6. Time-related saturation of 

porous medium calculated in reference 

points presented in figure 5. 

4. Conclusions 

The presented exemplary numerical modeling of saturated and unsaturated water flow in multi-layered 

rigid porous wall consisting of several building materials of variable permeability and water retention 

characteristics, based on the standard set of the Darcy and Richards equations, showed its potential in 

predicting the time-related saturation changes under different boundary conditions. The observed 

changes in saturation distribution were closely related to the physical and hydraulic characteristics of 

porous materials selected for modeling. The application of the repair cement mortar containing biomass 

ash significantly affected the water flow inside the modeled wall. This is clearly visible in the second 

scenario in which the ash-based mortar limited the water inflow through the left side boundary of the 

studied wall. 

However, to fully assess the application of numerical modeling based on the Darcy and Richards 

equations for the calculation of saturated, variably saturated and unsaturated water flow in porous 

building materials, it should be considered that the presented model was neither calibrated nor validated. 

Moreover, collecting the necessary input data for modeling of the tested materials which were not 

characterized earlier, covering saturated water conductivity and water retention curve characteristics, is 

time consuming and requires professional equipment for conducting hydraulic measurements. 
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