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Abstract. In this paper, the sampling rate of traditional signal reconstruction should be 
more than 2 times the maximum frequency of the original signal in order to ensure the 
non-distortion reconstruction of the signal. The theoretical knowledge of compressed 
sensing is deeply analysed, and the image signal is reconstructed by block 
compression sensing method. Experiments show that the sampling rate is more higher, 
and the reconstruction error is more smaller, but the processing complexity is more 
higher; conversely, the lower the sampling rate, the lower the processing complexity, 
the greater the reconstruction error. 

1.  Introduction 
Today's society is a society of information explosion. Every day we receive all kinds of 

information, among which a lot of information is based on images. Image itself has the characteristics 
of large amount of data. As people put forward higher requirements for image quality, the amount of 
image data also becomes very larger. This is a tremendous pressure for sampling and storage. In order 
to restore the undistorted signal, the sampling frequency must satisfy the requirement that the 
sampling rate be greater than twice the maximum frequency of the signal. It is difficult for existing 
equipment to achieve such a high sampling rate, or it will cost a lot of price to achieve such a high 
sampling rate, but this is obviously not appropriate and not worthwhile. In order to solve these 
problems, compressed sensing arises at the historic moment. 

2.  Compressed Sensing 
Candes, Tao, Donoho et al. proposed compressed sensing as a new sampling theory in 2006, and 

we abbreviate compressed sensing as CS. Under the CS’s theory, the original signal is firstly 
transformed into a sparse or compressible signal[1], [2]. Then, the transformed signal is observed by 
using the sparse basis characteristic and the observation matrix. The signal is projected into a space 
whose dimension is much smaller than the original dimension, and the key information points are 
retained. Finally, the original signal is restored by solving linear or non-linear equations. 

We first establish a mathematical model, assuming that the signal is sparse and compressible[3], [4], 
[5], which is denoted as x ∈ RN,  and under sparse base mapping ,x has k-sparse description as: 

𝑥 =  ψs                                                          (1)  
In formula (1), s is the sparse representation of x, and s contains k non-zero elements, and ≪ 𝑁 . 
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We can use an 𝑀 × 𝑁 observation matrix to project and observe the signal x, and get the observed 
signal y: 

                                                                                𝑦 =  𝛷𝑥                                                            (2) 
So y is an 𝑀 × 1 dimensional vector, and M < N. 
By combining formula (1) and formula (2), we can get the following formula: 
                                                                    𝑦 =  𝛷𝑥 = Φψs = 𝐴𝑠                                                 (3) 
In formula (3), A is called a sensing matrix, and satisfies the principle of constrained equidistant. 

So formula (3) is a problem for solving linear equations of s and y . But due to M < N, the number of 
equations is less than the number of unknowns, and this problem becomes the problem of solving 
undetermined equations. Because that s is the sparse representation of x , so y is a linear combination 
of K column vectors not equal to zero in sparse basis s of sensor matrix A[6], [7]. So if we know the 
position of K non-zero elements in s, we can list M* K linear equations to solve non-zero terms, and 
its necessary and sufficient condition is the following formula: 

                                                                       1 − ε ≤ ∥𝐴𝑣∥
∥𝑣∥2

≤ 1 + ε                                                 (4) 
In formula (4), ε is called is equidistant constrained constant, and ε ∈ (0,1).  
The construction of observation matrix is the most critical step in compressed sensing theory. A 

large number of scholars have found that the observation matrix must satisfy the following conditions: 
firstly, the column vectors of the observation matrix should be linearly independent; secondly, column 
vectors of observation matrices must satisfy independent randomness; finally, the solution obtained 
should be the minimum L1 norm. After a lot of research, it is found that Gauss random matrix, 
Bernoulli random matrix and partial Fourier matrix can be used as observation matrices satisfying 
isometric constraints, but they are not universal and difficult to implement.  

3.  Block Compression Sensing 
In 2009, L proposed a block compression sensing method, which divides the image into several 

blocks of the same size, and then uses the same observation matrix to process each block image. By 
using this method, it is easy to find a general and suitable Gauss random observation matrix because of 
the smaller image blocks, and it also reduces the data storage and improves the accuracy of the 
algorithm, which makes the implementation of software and hardware relatively simple[8],[9]. 

We can first divide an image with size N*N into n non-overlapping blocks with size B*B,  and 
𝑛 = (𝑁/𝐵)2,  if xi is the vector of the i-th block, the corresponding observation values yi can be 
obtained under the action of the appropriate observation matrix Φ𝐵: 

𝑦𝑖 =  Φ𝐵𝑥𝑖                                                     (5) 
In formula (4), Φ𝐵 is the observation matrix, and it can usually be a Gauss random matrix, its size 

is 𝑛𝐵 × 𝐵2. In order to satisfy the constrained equidistant condition, Φ𝐵 is an orthogonalized Gauss 
random matrix. All elements in matrix Φ𝐵 obey normal distribution with mean 0 and variance 1/𝑛𝐵 . 
When the sampling rate is α, 𝑛𝐵 =  [𝛼𝐵2] is satisfied, and The observation matrix Φ can be expressed 
as follows:  

                                                                   Φ = �
Φ𝐵 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Φ𝐵

�                                                     (6) 

According to the formula, it can be found that the sampling rate of the whole system can be 
changed by changing the sampling rate of α, which facilitates the hardware design. The number of 
blocks is more larger, B is more smaller, the faster the processing speed and the less memory it 
occupies, but the quality of signal reconstruction is worse. 

4.  Experimental results 
In order to verify the correctness of the algorithm, the image resampling experiment based on 

compressed sensing is carried out. First, the initial conditions are set. If we set the sampling rate to 0.9, 
the signal length is 16*16, then the number of measurements is 0.9*16*16. Make up 0 where the 
blocks are not covered. Then each block is processed, and the two-dimensional image is transformed 
into one-dimensional image by column vector. The second step is to implement sparse transformation 
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using DCT transform and other matrices. Finally, orthogonal matching pursuit algorithm is used to 
reconstruct the signal. The original and resampled figures are shown in Figures 1 and Figures2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. the original image                         Figure 2. the resampled  image 
As can be seen from the two images, the quality of the resampled image is not much different from 

that of the original image, only a little blurred in some details. There is a certain degree of distortion in 
the details. Although the details are distorted, the compression rate is improved. If we adopt different 
sampling rates, we can get different mean square error (MSE) and data processing time. These two are 
inversely proportional, that is to say, when the sampling rate is higher, the processing time is longer, 
and the root mean square error is smaller. Figure 3 shows the image quality at different sampling rates. 
The relationship between sampling rate, MSE and processing time is shown in Fig. 4 and Fig.5.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. Reconstructed Images at Different Sampling Rates 
The relationship between sampling rate, MSE and processing time is shown in Fig. 4 and Fig.5.  

Figure3 and Figure4 shows that when the compression sampling rate is small enough, the signal can 
not be reconstructed. With the increase of the number of observations, especially the sampling rate in 
the (0.1, 0.5) interval, the probability of reconstruction error decreases sharply. In the interval of (0.5, 
0.9), the reconstruction error tends to be flat. This shows that the original image can be reconstructed 
accurately with high probability as long as the sampling rate is above 0.5. 
 
 
 
 

sampling rate=0.3time=20s MSE=49.4 sampling rate=0.5 time=59s MSE=42.8 sampling rate=0.7 time=170s MSE=35.3

sampling rate=0.9computing time=418s MSE=21original image
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Figure 4. MSE at Different Sampling Rates        Figure 5. Computing time at different sampling rates 

5.  Conclusion 
This paper mainly studies image reconstruction algorithm based on compressed sensing. The 

orthogonal matching pursuit algorithm is used to sample and reconstruct the data. The simulation 
experiment is carried out on the MATLAB platform, and the corresponding conclusions are obtained. 
As a more advanced theory at present, the research of compressed sensing theory is only in its infancy. 
In the future, it will have a broader prospect in theory and application. 
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