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Abstract. The procedure of thresholding for graph construction is one of the common steps in 

calculating networks of brain connections. However, this procedure can lead to incomparable 

results from different studies. In the present study we aim to test the effect of thresholding or 

algorithmic reduction of the number of connected nodes on the construction of a set of widely 

used connectivity graph metrics derived from EEG data. 164 people took part in our study. 

Participants were recruited via social networks. EEG was recorded during resting state. At the 

beginning of the procedure each participant was asked to relax and not to think about anything. 

Source reconstruction was performed using standard source localization pipeline from MNE-

package. Desikan-Killiany Atlas was used for cortical parcellation with 34 ROI per 

hemisphere. Synchronization was estimated with weighted phase lag index in 4–30 Hz 

frequency range for eyes closed and eyes open separately. We have found that All metrics 

except average participation coefficient vary monotonously as a function of density level 

(moreover, we have found, that for Cluster Coefficient, more than 95% and for the 

Characteristic Path Length ~50% of the variance is related to thresholding cut-off). The 

different data-driven approaches to the network construction leads to significant changes in the 

group-level graph metrics and can eliminate the variance in the data that can be crucial for 

individual differences studies.   

1.  Introduction  

The human brain is an interconnected network of communicating regions.  One way to understand this 

network comes from mathematical graph-theory which can be used to describe complex structures and 

dynamics within networks [1]. Recently, this approach has been used to study the neurobiological 

correlates of psychopathology [2], cognitive processes and personality characteristics (e.g. 

temperament or creativity; [3, 4]). It has been shown that graph-theory derived brain network 

characteristics are stable and unique for an individual [5].  

Network neuroscience is new and developing area, and one of its challenges is considerable 

variability in the connectivity calculation routines, which is not always detailed and explicitly 

motivated in studies.  When constructing the graph of functional connections within the brain one 

starts from creating the adjacency matrix of the given relationship between any pair of sources of the 

recorded brain activity. Technically, the functional connectivity graph is a complete graph, because in 
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a real data it is virtually impossible to get a zero correlation between a pair of signals. However, both 

from computational and anatomical perspectives complete graphs within the brain don’t make sense. 

To go from complete graph to more meaningful incomplete graph the thresholding procedure is used. 

The thresholding is basically choosing a value according to which the connection would be regarded 

as present (if it is higher than this value) or absent (if it is low).  

This procedure is supposed to reduce spurious connections [6]. However, while thresholding is a 

good way to reduce the possibility of too much influence of spurious connections, it leads to 

confounds related to arbitrary choice of the calculation routines. According to the recent International 

Federation of Clinical Neurophysiology (IFCN) report, for M/EEG studies “there is no clear consensus 

on the statistical thresholds for the confirmation of a significant effect at the scalp or source level” [7]. 

The effect of the choosing different thresholding procedures for the calculation of the EEG-derived 

connectivity graph metrics has never been directly assessed. In the present study we aim to test the 

effect of thresholding or algorithmical reduction of the number of connected nodes on the construction 

of a set of widely used connectivity graph metrics derived from EEG data.  

2.  Materials and Methods  

2.1.  Participants 

164 people took part in our study. Participants were recruited via social networks without any 

monetary incentives. The exclusion criteria for participating was any report of psychiatric or 

neurological disorder or head trauma.  Participants age ranged from 17 to 34 (M=21.7, SD=3.36) with 

30% female. 

2.2.  Experimental procedure and data acquisition 

EEG was recorded during resting state. At the beginning of the procedure each participant was asked 

to relax and not to think about anything. The recording started with closed eyes, every 2 minutes 

experimenter asked to change the state (“Close your eyes, please” and ‘Open your eyes, please’). In 

total 10 minutes was recorded, with 3 eyes closed intervals and 2 eyes open intervals. 

EEG was recorded with 64-channel Brain Products ActiChamp system with 500 Hz sampling 

frequency with Cz as the reference electrode. EEG preprocessing steps included downsampling to 256 

Hz,  re-reference to common reference, filtering from 0.1 Hz to 30 Hz, manual removal of artifacts and 

noisy channels, except blinks and eyes movement artifacts for which Independent Component 

Analysis (ICA) was used. Topographic Interpolation was performed on excluded noisy channels if 

needed. 

2.3.  Source Reconstruction and Synchronization Measures 

Source reconstruction was performed using standard source localization pipeline from MNE-package. 

First, source space with 1026 sources per hemishpere was created. Second, BEM (boundary-element 

model) method was used to create three-layer model of the hemispheres. Three layers: inner skull, 

outer skull and outer skin. The conductivity of layers was standard for MNE package (0.3, 0.006, 0.3 

for three layers accordingly). MNE exploit anatomical information from FreeSurfer standard model 

head (Colin27). Third, the forward operator was constructed basin on the source space and BEM 

model. Fourth, the individual inverse operator was created for every participant with individual noise 

covariance matrix. Source reconstruction of each individual was performed with the appropriate 

inverse operator using dSPM method. Desikan-Killiany Atlas [8] was used for cortical parcellation 

with 34 ROI per hemisphere.  Synchronization was estimated with weighted phase lag index (wPLI, 

[9]) in 4-30 Hz frequency range for eyes closed and eyes open separately. 
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2.4.  Graph analysis 

2.4.1. Proportional approach to thresholding. On a basis of each connectivity matrix, we created a 

weighted graph for which relative threshold were applied. Threshold was calculated as quantile of 

synchronization strength distribution for every participant individually with values below threshold set 

to 0, representing lack of connection. Threshold values started from 0.1 (90% of the connections 

included) to 0.9 (10% of the strongest connections included) with 0.1 step.  

2.4.2. Data-driven approach to thresholding. An important problem of the thresholding procedure is 

that in a number of cases it leads to constructing the disconnected sub-graphs (graphs, that are not 

connected by at least one edge). Mathematically, disconnected graphs cannot be described by any 

single metric. In the present study we developed new thresholding approach, based on choosing the 

graph density level so that there were no disconnected nodes within the graph.  

Another way to construct the graph is based on the minimum spanning tree (MST) algorithms. In 

the present study we have chosen two version of this algorithm. The classic MST [10, 11] and the 

orthogonal MST developed by G. Dimitriadis [12]. We also add intra-individual means of the 

synchronization as the thresholds to compare it with the data-driven graphs. We also add intra-

individual means of the synchronization as the thresholds to compare it with the data-driven graphs. 

The following measures were chosen to describe the structure of a graph: 

⦁ Characteristic path length 

⦁ Clustering coefficient 

⦁ Small-world Index 

⦁ Participation coefficient 

3.  Results 

3.1.  Proportional approach to thresholding problem 

The figures 1 demonstrate changes in the mean and standard deviations for 4 graph-based connectivity 

metrics separately for wPLI and ImCoh as a synchronisation measure and for eyes open/closed 

conditions. Thresholds are presented from left to right in order of descending density, from full graph 

(density 1) to 90th quantile (density 0.1), followed by the mean density as the threshold and for the 

minimally connected graph (graph with minimum possible density without disconnected nodes). 

At the next step of our analysis we wanted to estimate the proportion of the variance in the 

calculation of graph metrics as the result of the thresholding procedure. Linear regression analysis was 

performed in order to investigate the dependence of measures from the thresholding value. At this step 

the measures were recalculated:  we used 1%-step instead of 10% step to have a smoother scale. 

Table 1. Linear regression coefficients and adjusted R Squared value for all measures. 

 Intercept Density value (Coef) Adj.R.Squared 

CharacteristicPL 0.929989 -0.82389 0.499992 

ClustCoef 0.192732 0.800123 0.976311 

Participation_coef 0.565608 0.083153 0.065674 

*Calculation of SWI with step 1% is computationally too heavy, and 10 points are insufficient for the linear 

regression, so, SWI was removed on this step. 
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The regression analysis showed that for CPL and Cluster Coefficient metrics the density-based 

thresholding explained a large amount of the overall variance in the data. The participation coefficient 

was shown to be much more stable across various thresholding values. 

 

Figure 1. The effect of proportional thresholding on the EEG graph metrics 

3.2.  Data-driven approach to thresholding problem 

To avoid the subjectivity in the choosing the threshold, the data-driven approach to spurious nodes 

elimination has been proposed. In the present study we compared graph metrics based on the networks 

with two subjective thresholds with intra-individual mean and median density as the cut-offs, the 

classic MST-based network, and the orthogonal MST-based network. We have also  

The next step of our analysis was comparing the different data-driven approaches to graph 

construction. The results of the comparison can be seen in Fig. 2 

The one-way ANOVA model showed that the thresholding factor was significant for all the graph 

metrics. It can be also seen, that choosing the classic MST algorithm for network construction led to 

elimination of any individual differences in our sample. 

4.  Discussion 

In the present study we analyzed the dependence of the graph functional connectivity metrics on the 

widely-used density-based thresholding procedure. All metrics except average participation coefficient 

vary monotonously as a function of density level (moreover, we have found, that for Cluster 

Coefficient, more than 95% and for the Characteristic Path Length ~50% of the variance is related to 

thresholding cut-off). 

The different data-driven approaches to the network construction leads to significant changes in the 

group-level graph metrics and can eliminate the variance in the data that can be crucial for individual 

differences studies. Overall, according to our results the way the researcher solve the thresholding 

issue heavily affects the outcome of the connectivity analysis. Our results add to the previous results 

by Garrison and colleagues [13] with fMRI and Civier and colleagues [14] with DTI, showing that in 

EEG studies the thresholding should be used with considerable cautious. 

Our results are in line with the results of the broader study regarding the analytic choices in the 

neuroimaging studies in general [15]. The combined results from 70 independent research teams have 
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showed that an existing level of analytical flexibility in modern neuroscience can lead to substantial 

variability of the scientific conclusions. So, what can be done, if there is no strong arguments that can 

be made for the best choice of the analysis routine? 

 

 

Figure 2. The comparison of proportional  

and data driven thresholding on the EEG graph metrics 

First, sharing the raw or preprocessed data should be incentivized as the common practice between 

researches. The individual researchers and the scientific community benefits of the open science 

approach to sharing data have been discussed extensively [16]. Second, the degrees of freedom in the 

analysis can be minimized with the adoption of pre-registration of the new studies or the re-analysis of 

the previously recorded data [17].  

Finally, the multiverse approach to the analysis of the complex datasets can be accepted [18]. The 

multiverse approach suggests that multiple analytic pipelines can be applied to the datasets and the 

total conclusion about the effects of interest can be settled only after accounting for the differences in 

the results of the different analytic choices. One way to increase the reproducibility and the integrity of 

this analysis can be achieved by blinding the analysts to the hypothesis of interest. In general, deflating 

the multiverse involves developing a better and more complete theorizing of the constructs of interest 

and improving their measurement. 

5.  Conclusion 

To sum up, in the present study we have shown that in agreement to the broader problem of the 

analytic choices in neuroimaging studies, the analysis of the brain connectivity can be highly 

dependent on choosing the thresholds for connectivity matrices construction with no best way to 

choose between different analytic options.  Potential approaches that could be used to mitigate issues 

related to analytical variability involves new practices of data sharing, preregistration and multiverse 

approach to analysis. 
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