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Abstract. Rapidly advancing technological advancements in the recent past has made the life of 

consumers at ease through innovation of sophisticated and state of the art gadgets. The 

consumers are able to access data at high speeds at their own free will irrespective of time and 

location. With increasing benefits of these wireless gadgets and technologies working on well-

known and efficient radio frequency spectrum, an increasing scarcity in availability of radio 

frequency spectrum is found to be a rising consequence in recent times. With ever increasing 

number of wireless gadgets, increasing burden on spectrum allocation is emerging to be a 

prevalent research topic in recent times. Cognitive radio networks (CRNs) have been found to 

be effective and intelligent solutions, which by a sequence of intelligent sensing, aggregation of 

sensed information and decision making, provide an optimal method of allocation of spectrum 

to demanding users. This paper provides a detailed insight into various methods used in 

cognitive spectrum sensing, their classifications and methodologies. A vast survey of literature 

has been systematically provided in this paper with the issues and challenges forming the 

concluding parts of this survey. Knowledge of existing methods described in the literature with 

their merits and limitation help in developing and improving the performance of existing 

spectrum sensing methods to a great extent. 

Keywords: Cognitive radio networks, spectrum sensing and allocation, received signal 

strength, false alarm detection, primary users, and secondary users. 

1. Introduction 

In recent times, there has been a rapid increase in the utility of state of the art devices and gadgets 

powered by cutting edge technologies. There has been an ever increasing demand for efficient methods 

of data processing, their handling mechanism and storage requirements. Fast computing has been the 

demand from the side of consumers, who require high rates of data transfer with communications 

reaching their location in the shortest time possible. This has been witnessed by the sudden boom in 

development of hand held gadgets where users are able to communicate and access whatever 

information they require irrespective of time and location. Wireless communication technologies have 

gained significant research interests and ground, with the increasing utility of such handheld gadgets 

by consumers. Wireless communication technologies have evolved a long way but in the shortest time 

possible due to this rapidly increasing demand for fast communication rates across the globe. Remote 

monitoring and surveillance, remote monitoring in health care sector, industrial automation through 

sensors, surveillance of hostile territories are some of the most significant utilities being put in practice 

today, using concepts of high speed wireless data transfer [62]. A simple chart illustrating the growth 

of such wireless technologies in the past two decades is illustrated in figure 1 shown below.  
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Fig. 1 Illustration of evolution of wireless communication technologies. 

 

It is quite evident from the above illustration, that, the evolution of communication technologies 

starting from conventional dial up networks which are characteristic of 1G technologies have come up 

to high speed wireless methods [29] [35] with 4G and 5G technologies in the shortest time possible. On 

the other hand, an essential point to be noted, from the evolution graph, is that, technological 

advancements have been a blessing in disguise, as improvement in wireless communication 

technologies leading to increased number of wireless devices/gadgets, have put a high volume of 

overhead on the electromagnetic spectrum. Since, all these wireless devices operate on the radio 

frequency spectrum (RF), the availability of radio frequency spectrum is becoming scarce day by day. 

Higher speeds of transmission demand higher bandwidths, which, is quite a challenging blockade with 

respect to allocation of scarcely available RF spectrum [63]. In spite of alternate technologies to RF 

spectrum being research in recent times, like light fidelity technology, it is to be noted that, these 

researchers are very much in their infant stages. Moreover, they are hindered by a line of sight 

communication challenge which is a limiting feature in case of long distance wireless communication. 

Hence, in view of all the above mentioned facts, there has been an increasing need for an effective and 

intelligent method of allocating the available radio frequency spectrum among users/consumers for 

their device operation. This growing interest and research activities in the related field has led to 

concept of cognitive radio networks (CRNs) [4]. Cognitive radio networks [43 – 44] could be simply 

defined as intelligent components which help to allocate scarcely available radio frequency spectrum to 

demanding users/consumers based on a sequence of operations namely, sensing, aggregation and 

decision making [52]. This process of three activities is commonly referred to as the cognitive cycle 

[55]. A typical cognitive cycle is depicted in figure 2 shown below. 
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Fig. 2 Illustration of cognitive cycle in CRNs. 

 

It could be observed from figure 2, that, a systematic sequence of sensing followed by aggregation 

of sensed information [16] evidently leading to decision making based the sensed information, form 

the complete cognitive cycle [46]. Beforehand, it is to be noted that, the cognitive radio network 

system categorizes the users/consumers into two major groups’ namely primary users (PU) and the 

secondary users (SU) [32]. While primary users reflect the licensed group of users, secondary users 

represent the unlicensed band of users. Based on spectrum availability, the cognitive network allocates 

the available bandwidth in an intelligent manner to the users demanding access. It is to be noted that, 

the licensed band of users (PUs) have complete access to bandwidth while SUs have to find a way to 

access bandwidth only when available. Hence, the entire problem of cognitive radio network converges 

to a detection or classification process, where, the channel is continuously sensed for presence of PU 

activity [108] [80]. In case, PU activity is not detected, a requesting SU is given access to the RF 

spectrum. In other words, the problem definition of CRNs is concisely stated to be a binary hypothesis 

problem related detection of presence or absence of PU activity in the channel. Mathematically it could 

be formulated as 

   |
     ( )   ( )    

     ( )    
|           (1) 

In equation (1), y(t) represents the output signal or the received signal on the channel, δ represents 

the channel noise while CS represents cognitive sensing. Equation (1) could be interpreted as the 

detector output to be a one when the primary user activity is detected in the channel while a 0 is 
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interpreted as the presence of just channel noise with no primary user activity, thus reflecting 

availability of bandwidth. 

With the preliminary insights into cognitive sensing using CRNs, this review paper is organized 

into two section henceforth with the first briefing about the various conventional models of efficient 

spectrum sensing [2] using concepts of CRNs [26] [58]while the second phase elaborates on the role of 

soft computing models to achieve the prescribed objective.                           

2. Conventional spectrum sensing models in CRNs        

As mentioned in previous sections, CRNs are all about intelligent allocation of available bandwidth to 

users requesting access to the EM spectrum. The efficiency of CRNs in doing the same, is largely 

dictated by presence of a powerful and effective cognitive cycle, which involves sensing, aggregation 

and decision making [105]. A continuous method of sensing the channel for any presence of primary 

user is to be done the CRN model [9]. At the outset, CRNs are found to operate in two major schemes, 

namely non-cooperative [19] [69] and cooperative methods [10] [25]. In the former scheme, the SUs 

requesting access to the spectrum have their own individual objectives of getting access to the 

spectrum without any due consultation with other SUs. This vacancy otherwise known as spectrum 

hole or white space can be detected only with efficient and continuous sensing of channel [3].  

 

Non- cooperative methods are also termed as local sensing methods as there is no coordination and 

communication between the SUs in the network.  In the latter, the existing SUs gain access to the 

channel in a cooperative manner, which is achieved by total coordination and communication between 

existing SUs requesting access to the channel [27] [114]. Information from all sensing units are 

gathered, analyzed and then a decision is arrived on the allocation of bandwidth to the most deserving 

SU. Amongst cooperative sensing [90], a distributed sensing [87] ensures that each SU in the network 

takes its own decision based on information sensed while a centralized sensing ensures that a 

specialized infrastructure based fusion center makes the decision after complete analysis of the sensed 

information [24]. However, since, the objective of this survey is related to the various sensing methods 

[112][118] employed in the CRN model, a review of various methods of information sensing is 

discussed in this section 

2.1. Energy detectors 

A well-known simple yet effective method is the energy detection model. Its operation is quite straight-

forward in the sense that presence or absence of PU in the channel is detected based on comparing the 

received signal energy with a standard threshold. The energy statistic is obtained through a fast Fourier 

analysis followed by squared magnitude of the average energy [91]. The threshold in this case to a 

great extent depends on the estimation process of noise, which is also quite challenging. The 

challenges related to noise estimation arises from the fact that, noise magnitude is not static and highly 

unpredictable [89]. Hence, dynamic methods of noise estimation have also been used in the literature. 

Most of energy detection methods make the detector to sense for primary user activity over a specific 

time window [11]. However, in case of fading channels [49] like Nakagami and Rayleigh models 

[106], the fixed time window based detection may not work and hence, may result in drastic increase in 

false alarm detections. Hence, these scenarios are considered equivalent to detection of unknown 

signals [24] where specialized square law combiners and selectors are used to improve the probability 

of detection. This scenario arises even in case where the transmitter power drops down drastically thus 

making incorrect detections. Noise limitations have also been carried out using a band pass filter – 

square law device mechanism [71]. Detection of presence of PU is done by threshold comparison 

technique. Probability of false alarm has been used an efficient metric to validate the performance of 

the proposed technique. Effects on false alarm performance through varying levels of signal to noise 

ratios (SNRs) in ranges of -10dB has also been performed. However, limitations like vulnerability of 

threshold towards varying levels of noise intensities tend to increase the probability of false alarm [99 

– 100]. 
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2.2. Matched filter techniques    

The Increasing interference of noise in channel making detection of PU activity makes it a 

cumbersome process in case of simple energy detection models [84]. Hence, concepts of matched 

filtering which exhibits phenomena of linearity have been used to enhance the SNRs of the receive 

signal, thus making the detection process much easier. Matched filters [30, 93] operate on the same 

lines of energy detectors by utilizing a threshold comparison process. On the contrary to energy 

detectors which do not require any prior knowledge, the statistics required for generating the threshold 

is taken from pilot signals obtained from the same transmitter. They are simple in structure and exhibit 

optimal performances. However, requirement of prior knowledge for extraction of samples for the pilot 

signal prove to be a limiting factor. Moreover, advances in matched filter detection methods have been 

investigated in the literature [42] [81] where dynamic threshold assignments have been invoked to 

accommodate continuously changing noise characteristics. Knowledge of prior information regarding 

the received signal with matched filters include parameters like bandwidth, modulation technique used, 

the format of the transmission frame used etc. 

 

Further, matched filters are divided into coherent and non-coherent methods. While in the former, 

the magnitude and phase of received signal is known, a replica of the received signal is used to 

compute either power or magnitude of received signal for comparison with the predefined threshold 

value. Method of improvement in spectrum utilization has been reported using matched filtering 

techniques in the literature [23] where the problem of SU requiring a spectrum space in 5 Gaussian 

channels with zero mean and variance is experimented. Effects of modulation have been studied in this 

method where BPSK modulation schemes report a lower detection rate of 0.43 over AM schemes 

which report a 0.8 detection rate. However, with increasing false alarm rate scenario, AM and BPSK 

schemes are found to converge on their detection rates. SNR computations are critical to matched filter 

methods and computed as 

         (  )   
| ( )| 

| ( )| 
                       (2) 

 

Where R(t) represents the magnitude of received signal and N(t) reflects the magnitude of noise on the 

Gaussian channel. Other essential parameters for modeling the efficiency of the spectrum sensing 

process include probability of detection computed as 

         (√ (   ) √
 

  
)               (3) 

and probability of false alarm detection computed through 

 

                                                                         (
 
 ⁄   )                     (4) 

In equations (3) and (4), T represents the threshold for comparison and σ the variance of noise. 

Qdenotes the branch of the matched filter also referred to as the Q function of the matched filter. A 

detailed investigation in the literature related to performance comparisons of matched filtering 

techniques against energy detectors have been presented [81]. Findings from the work indicate non 

requirement of prior knowledge of receiver characteristics, simple scheme of detection as the 

meritorious points while unstable nature of threshold, capability to operate in low SNR environments 

to be limitations [72]. On the other hand, matched filter techniques are characterized by increased 

robustness to noise, ability to dynamically adapt to changing noise patterns [68]. However, requirement 

of prior knowledge of channel and signal characteristics, need for different receivers for varying 

signals are observed to be the limiting features of MF methods. 

 

2.3. Cyclo-stationary feature detection schemes 

These methods of cognitive spectrum sensing through feature detection of sensed channel requires 

prior information of the received signal. They are found to be more robust towards noisy channels 

when compared over energy detector models with the consequence of being relatively complicated. 
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They work on the principle of identifying repeated patterns from the sensed signals analogous to 

periodic signal detection [85]. Based on the computation of integral of the periodically detected feature 

signal with a threshold, the presence or absence of PU is detected [104]. Experimental results in the 

literature prove that they work better even at lower levels of SNRs. Conventional cyclic feature 

detection methods exhibit a high degree of computational complexity due to excessive computations of 

FFTs and periodograms. Reduction in complexity is observed in a sub section average cycostationary 

feature detection proposed in the literature [107]. This is accounted for, by segmenting the input 

features into subsets and computing FFTs for each of the subset. This method requires partial prior 

information on the channel characteristics and received signal. Spectral correlation factor (SCF) have 

been used as a parameter to identify the periodic feature set [33] using window functions such as 

Hanning, Hamming etc.CyclostationarySpectral Function (CSF) and CyclostationaryAutocorrelation 

Function (CAF) have been used in the literature [79] to estimate the periodicity of the sensed received 

signal. Optimal spectral efficiency in presence of fading channels are notable findings of this 

experimental work. A sequential method of cyclostationary feature detection [20] is found to reduce 

the computation time to a great extent when compared over conventional cyclostationary detection 

methods. This in turn is found to improve the sensing efficiency 

 

Other methods of spectrum sensing using cognitive networks observed in the literature present an 

Eigen value computation based method of presence of PU. These techniques do not require prior 

knowledge regarding the channel or signal characteristics [47]. Either ratio of maximum to minima of 

Eigen value or ratio of average to minima of Eigen value [70] is used to detect the presence of PU 

activity. Markov models [65] [101] have been successfully implemented in literature for effective 

spectrum sensing based on analysis of spectrum sensing time interval.Cooperative sensing schemes 

using single and double relay models [77] have been investigated in the literature. In the first model, 

namely, amplify and relay (AR), the relay unit senses the received signal, amplifies and relays to the 

sensing unit located outside the local coverage area during the first time slot. In the double relay 

model, namely, detect and relay, the sensed signal is analyzed for presence of PU and then relayed over 

to the decision making unit. Complexity in the sensing process and prevention of fading effects [67] on 

sensing reports are reduced by invoking concepts of clustering [94] [12] [39] where local sensing [57] 

methods are employed to gather energy information and sent to the cluster heads. These cluster heads 

analyze these reports and make a preliminary decision. Following this, the reports of all cluster heads 

are sent to the receiver module which ultimately decides upon allocation of spectrum based on 

availability. Similar clustering schemes have been made noise resistant by integrating with Eigen value 

decomposition methods [61] [28].Advances in cluster based spectrum sensing methods have been done 

in the literature [64]. High sensing efficiency, reduction in reporting time of sensed reports to the 

fusion center and reduced energy consumption are notable findings from this experimental work. 

3. Machine learning models in CRN spectrum sensing 

Machine learning methods have been found to be rapidly emerging areas of interest in recent times. 

Machine learning methods are based on learning based approaches followed by training to detect and 

converge upon the desired point of optimization [88]. A review of various intelligence based 

techniques for cognitive spectrum sensing is summarized below in table 1. 

 

Technique Principle of working Merits Limitations 

Fuzzy based 

methods 

[40][6][13][7] 

Rule based fusion for 

detection of 

presence/absence of PU 

in the channel 

Improved 

probability of 

detection and 

reduced false alarm 

detection 

Increased time 

consumption 

Accuracy depends on 

efficient spectrum sensing 

using energy detection 

method 

Fuzzy C means 

spectrum sensing 

[21]  

Soft decision based PU 

detection [95] 

Increased detection 

probability and 

utilizes less number 

Depends on efficiency of 

energy detector 
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of samples 

Neural Network 

based spectrum 

sensing [17] [96] 

[86] [48] [102] 

Training of feature 

vectors from the received 

signal [73] 

Improved energy 

detection and 

capable to self-adapt 

to dynamically 

varying conditions 

Weights are trained 

using historical 

sensed information  

Better performance 

over AND and OR 

based rules 

Efficiency depends on 

effective feature extraction 

process [78].  

Deep learning based 

spectrum sensing 

[103] [31] 

Extended versions of 

NNs for handling 

unstructured and 

complex data 

Superior 

performance even at 

low SNRs [60] 

Increased gain [56] 

over conventional 

methods 

Computational complexity 

tends to increase with 

increasing layers 

Game theory based 

spectrum sensing  

[15][34][83][8][38] 

Derivatives of 

evolutionary algorithms 

allowing users to choose 

between two strategies 

[66] 

Optimal resource 

allocation [59] [110] 

Optimal power 

allocation to users 

[92] [113] [116] 

Computational complexity 

overhead with increasing 

number of users. 

 

Apart from the above mentioned machine learning methods, concepts of optimization have been 

playing a major role in recent time to optimize essential components towards convergence of optimal 

solution. Nature inspired algorithms [75] like ant colony optimization [37], bee colony [53], particle 

swarm optimization [82] [117], genetic algorithm [22] [45], cat swarm algorithm [76] have been 

effectively used to optimize essential constituents like feature vector sensed by the sensing units. This in 

turn help in providing precise decisions related to presence/absence of primary users in the received 

signal. They also play vital roles in optimizing the number of SUs and assigning their priorities towards 

channel assignments [50] 

4. ISSUES AND CHALLENGES 

 
An extensive survey of literature related to various methods of efficient spectrum sensing has been 

studies in this paper and findings have been summarized in this section. 

1. Rapid advances in communication technologies have seen an enormous growth in utility of 

various gadgets which are handheld and portable. These devices provide state of the art 

services to the consumer. Most of these devices utilize radio frequency for their operation 

hence making it a very scarce quantity. Hence, the need for cognitive radio systems, which 

allocate spectrum in an intelligent manner, has become an emerging area of interest in recent 

times.  

2. Energy detector schemes are simple yet efficient schemes of detecting the presence/absence 

of PU in the received signal. However, most of the schemes observed in the literature suffer 

from a fixed threshold problem, as noise prevalent in such channels tend to vary with time in 

a random manner.  

3. An essential finding from energy detection scheme is that, it does not require any aprior 

knowledge [36] regarding the channel characteristics. However, it does come with a 

consequence of not being able to differentiate between various signal types. These schemes 

could be used for mere detection purposes.  
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4. Matched filter detection methods are similar to ED models except that they require aprior 

knowledge of the received signal which is not possible at all times. Better noise handling 

capabilities are yet another finding of these matched filter methods.  

5. Cyclostationary feature detection methods exhibit optimal performances even in presence of 

noise but require full or partial prior information. Process of cyclostationary feature 

detection are found to exhibit increase computational complexity.  

6. Cluster based methods are found to reduce the network complexity and thereby reduced 

energy consumption.  

7. Opportunistic methods [18] is one of the most widely sought after technique for CRN 

models where allocation of bandwidth to SUs during idle times of PUs is the primary logic.  

8. Another challenging issue found from literature involves reduction in interferences of SUs 

and PUs which if left unattended may result in drastic degradation of system throughput. 

Hence appropriate methods of noise estimation and interference estimation is to be carefully 

studied and examined before implementation.  

9. Channel Estimation is one of the major issue and challenges in CRN models as effective 

sensing is reflected through a precise channel estimation technique and amount of 

information gathered through channel state information (CSI) [5].  

10. Machine learning methods have been investigated to a great extent in the literature and have 

been able to provide precise decisions on presence and absence of PUs in the sensed signal 

[1]. The preciseness in most of the case is dependent on efficient feature detection and 

efficient non-cooperative techniques like energy detectors, matched filters etc.  

11. Optimization methods [74] [111] have been effectively used in the literature to provide 

optimal spectrum allocation, distribution of resources [97] [109] and power allocation to 

users [51] [54].  

This survey paper has provided an exhaustive study of various research contributions and 

presented findings of each technique with their prospects and limitations for spectrum sensing 

through cognitive radio networks. The paper has systematically discussed various techniques related 

to cooperative and non-cooperative methods of spectrum sensing. The findings of this paper would 

be an eye opener to researchers working in the relevant field of spectrum sensing using cognitive 

radio networks.  
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