Paper The following article is Open access

Asymmetric hollow-fiber filtration membranes based on insoluble polyimide (R-BAPB): Influence of coagulation bath on porous structure

, , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation I L Borisov et al 2020 J. Phys.: Conf. Ser. 1696 012040 DOI 10.1088/1742-6596/1696/1/012040

1742-6596/1696/1/012040

Abstract

The insoluble polyimides are the most promising group of polymer materials for fabrication of solvent stable filtration membranes suitable for operation at elevated temperatures. In order to synthesize asymmetric membranes from insoluble polyimide, it is proposed to fabricate the membranes from a pre-polymer solution (polyamide acid – PAA) by non-solvent induced phase separation method followed by imidization to form non-soluble porous polyimide membrane. The thermoplastic crystallizable polyimide R-BAPB, which is resistant to a number of known organic solvents, was chosen as a membrane material. For the first time, hollow fiber membranes based on imidized PAA (R-BAPB) with a controlled distribution of pores on the inner side of the hollow fiber were formed. It has been established that the use of "hard" non-solvents, such as water or aqueous-organic solutions, is preferable for the formation of a porous structure in the membranes based on PAA (R-BAPB). Synthesized PAA membranes were used to prepare porous membranes based on the thermoplastic polyimide R-BAPB by thermal imidization. Imidization process was confirmed by an increase in the glass transition temperature of the material to 220 °C (corresponds to the glass transition temperature of polyimide (R-BAPB)) and is accompanied by a significant increase in its elastic modulus. The results of the measurements of the transport properties of polyimide membranes for gases and liquids indicate that microfiltration transport pores are present in the membranes.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1696/1/012040