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Abstract. With the emergence of Kinect, many research results have emerged in human action 
recognition based on skeleton information, which has promoted the development of human-
computer interaction. In this paper, from the skeleton data obtained by Kinect, static features 
and dynamic features are extracted, and the two are merged; SVM classifier is used for action 
recognition. It is verified on the MSR Daily Activity 3D data set, and the experimental results 
show that the method in this paper improves the accuracy of action recognition. 

1.  Introduction  
With the development of the information age, people hope that computers can become more and more 
intelligent, able to "see" and "listen" to the world like humans. Among them, computer vision 
technology can make computers "see" the world like humans. In the field of computer vision, action 
recognition technology has an important position. It can understand human actions and better interact 
with people. It has appeared in video surveillance, gaming, medical, and virtual reality fields. 

In action recognition, action recognition based on 2D vision will be affected by factors such as 
illumination, occlusion, and shadow during image processing[1]. Recognizing human movements 
through wearable sensors has high accuracy and real-time performance. However, adding gyroscopes 
and accelerometers to collect human motion parameters will reduce the comfort of human body and 
destroy the naturalness of human-computer interaction [2]. 

The advent of the Microsoft Kinect depth camera has brought new ideas to action recognition. 
Using the skeleton information obtained from the Kinect depth camera for human action recognition 
can overcome the above-mentioned problems of illumination and noise. Therefore, the use of Kinect 
for action recognition is favored by more and more researchers. Many research results have been 
greatly improved in the accuracy and speed of human action recognition. 

2.  Related technology introduction 
Action recognition using Kinect can be divided into the steps of skeleton data acquisition, feature 
extraction, and action recognition, as shown in the figure 1. 
 
 

 
 

Figure 1. Action recognition steps. 
 
 

skeleton data feature extraction action recognition 
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2.1.  Kinect gets skeleton data 
The core of the somatosensory interaction device Kinect is an infrared device, through which Kinect 
can obtain information about the joint points of the human skeleton. In addition, Kinect also has the 
functions of dynamic tracking, image recognition, color imaging, and voice interaction. 

Kinect obtains skeleton data from the depth image can be divided into 3 steps. First, the distance 
between the pixels in the depth image reflects the human body part. The human body foreground can 
be segmented based on this point, and then the human body contour image in the RGB image can be 
divided by edge detection. Split out. Secondly, the trained random forest model is used to obtain the 
probability distribution label, and the human body image is divided into 32 different parts. Finally, 
according to the obtained human body part tags, the local model method is used to merge each type of 
pixel points to form the three-dimensional coordinates of the human body joint points[3]. 

2.2. Research on action feature extraction 
In human action recognition, if we can extract the motion features that effectively express the action, it 
is very important to the result of the action recognition, because it directly affects the final result of the 
action recognition. In order to complete action recognition, Carlsson et al. [4] performed shape 
matching between the key frames extracted from the action video and the saved action prototype. 

2.3. Research on Action Recognition Method 
At present, the commonly used action recognition methods include: template-based methods and 
probability statistics-based methods. The template-based method is intuitive and simple, and judges 
the motion category by comparing the similarity between the target to be detected and the template. 
Therefore, it lacks certain robustness. Ji et al. [5] used the dynamic time warping method to calculate 
the similarity between the action to be recognized and the action in the action library. The probabilistic 
statistical model represents the action as a continuous sequence of states, and the transition law 
between states can be represented by a time transfer function. Liu Fen [6]used Kinect sensor to generate 
human action depth map, establishes a three-dimensional human body model, uses the angle and 
modulus ratio of motion vectors as feature vectors, and uses SVM classifier for human body action 
classification and recognition. 

3.  Algorithm implementation 

3.1.  Action feature extraction 
In each frame of the action sequence, there is a certain positional relationship between the joint points, 
so the spatial attributes of the action feature can be extracted. In addition, the same skeleton joint point 
has corresponding changes in each frame of the action sequence, based on which the time attribute of 
the action feature can be extracted. Therefore, when performing action feature extraction, we extract 
corresponding static and dynamic features based on the spatial and temporal attributes of the action 
feature. 

Compared with Kinect V1, Kinect V2 has greatly improved its performance. From the original 20 
joint points drawn in the visual range of the human body to 25 joint points, the neck, left hand tip, 
right hand tip, left thumb, and right thumb have been added. Coordinates, improve the recognition rate 
of gestures. However, the data set used in this article seldom involves hand movements, so the 20 joint 
point coordinates provided by Kinect V1 are used, as shown in the figure 2[7]. 
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Figure 2. Human skeleton diagram. 

The static feature is the position vector information between the skeleton joint points in each frame 
of the action sequence. The vector relationship between the 20 skeleton joint points is used to 
represent the static feature, that is, the vector form of the 19 segments of human limbs represented by 
the adjacent relationship of the joint points as shown in the table 1. 

Suppose there is a human body action sequence X, the human body action can be expressed as 
formula (1). 

𝑋 ൌ ሺ𝑋ଵ,𝑋ଶ,𝑋ଷ,⋯ ,𝑋௧ ,⋯ ,𝑋்ሻ                                                     (1) 
Where T represents the number of frames of the action sequence, that is, the length of the action 

sequence. For a certain frame 𝑋௧ of the action sequence, each contains 20 skeleton joint points, then 
XtൌሺV1

t,V2
t,⋯,Vm

t ,⋯,V20
t ሻ .Where  𝑉௠௧  represents the m-th joint point of the t-th frame of data. Then 

𝑉௠௧ ൌ ሺ𝑥௠௧ ,𝑦௠௧ , 𝑧௠௧ ሻ். According to Figure 2, the relationship between human limbs as shown in the 
table 1. Static feature is shown in formula (2): 

Fstaticൌቆ
V3

t-V20
t ，V3

t-V1
t，V1

t-V8
t，V8

t-V10
t ，V10

t -V12
t ，V3

t-V2
t，V2

t-V9
t，V9

t-V11
t ,⋯，

V5
t-V14

t ，V14
t -V16

t ，V16
t -V18

t ，V7
t-V6

t，V6
t-V15

t ，V15
t -V17

t ，V17
t -V19

t ቇ   (2) 

The dynamic feature refers to the vector feature of the direction change between the skeleton joint 
points in the current frame and the previous frame in the action sequence. For the data 𝑋௧  in X, 
dynamic feature is shown in formula (3) or (4). 

𝐹ௗ௬௡௔௠௜௖ ൌ ሼ𝑉௠௧ െ 𝑉௠௧ିଵ|𝑚 ൌ 1,2,⋯ ,20ሽ                                   (3) 
𝐹ௗ௬௡௔௠௜௖ ൌ ሼ𝑥௠௧ െ 𝑥௠௧ିଵ，𝑦௠௧ െ 𝑦௠௧ିଵ，𝑧௠௧ െ 𝑧௠௧ିଵ|𝑚 ൌ 1,2,⋯ ,20ሽ               (4) 

Human actions can be regarded as composed of continuous static postures, that is, an action 
sequence contains multiple frames of information, and the correlation between the front and back 
information between frames is relatively large, so it is difficult to accurately describe a single action 
feature by extracting only a single action feature. Human action, considering that the information 
contained in human action is not only related to the spatial position between joints, but also has a 
certain relationship in time, so this article uses the corresponding static and dynamic hybrid 
characteristics to describe human actions. 

Table 1. Limb relationship. 
Joint 1 3 3 1 8 10 3 2 9 11 7 4 7 5 14 16 7 6 15 17 
Joint 2 20 1 8 10 12 2 9 11 13 4 3 5 14 16 18 6 15 17 19 

3.2.  SVM action recognition method 
The basic idea of support vector machine (SVM) is to solve the separation hyperplane that can 
correctly divide the training data set and have the largest geometric interval. Taking two dimensions as 
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an example, the black dots and white dots in Figure 3 below belong to two different categories. The 
purpose of SVM is to ask for a line to "best" distinguish these two types of points. The sum of the 
distance between a certain line and the closest points on both sides of it is the margin. For example, 
the band formed by the two dashed lines in Figure 4 is the margin. Therefore, SVM is to find the 
hyperplane that can distinguish the two categories and maximize the margin[8]. 

 
Figure 3.SVM diagram. 

 
Figure 4.Margin graph. 

For the condition of linearly separable data, suppose a given training data T ൌ
ሼሺ𝑥ଵ, 𝑦ଵሻ, ሺ𝑥ଶ,𝑦ଶሻ,⋯ , ሺ𝑥ே ,𝑦ேሻሽ in a feature space, where 𝑥௜ ∈ 𝑅௡, 𝑥௜  Is the i-th feature vector. 𝑦௜ ∈
ሼെ1,൅1ሽ is the category label, i ൌ 1,2,⋯ , N. 

For a given data set T and hyper plane ω. x ൅ b ൌ 0 , define the geometric interval of the 

hyperplane about the sample points ሺ𝑥௜ ,𝑦௜ሻ as 𝛾௜ ൌ 𝑦௜ ቀ
ఠ

‖௪‖
. 𝑥௜ ൅

௕

‖௪‖
ቁ , the minimum value of the 

geometric interval of all sample points in the hyperplane is 𝛾 ൌ min
௜ୀଵ,ଶ,⋯ே,

𝛾௜. 

The problem of solving the maximum split hyper plane of the SVM model can be expressed as the 
formula (5) and formula (6). 
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max
ఠ,௕

𝛾                                                                            (5) 

𝑠. 𝑡.      𝑦௜ ቀ
ఠ

‖ఠ‖
. 𝑥௜ ൅

௕

‖ఠ‖
ቁ ൒ 𝛾, 𝑖 ൌ 1,2,⋯ ,𝑁                                   (6) 

After sorting out, the maximum segmentation hyper plane problem of the SVM model can be 
expressed as the formula (7) and formula (8). 

min
ఠ,௕

ଵ

ଶ
‖𝜔‖ଶ                                                                    (7) 

s. t.𝑦௜ሺ𝜔. 𝑥௜ ൅ 𝑏ሻ ൒ 1, 𝑖 ൌ 1,2,⋯ ,𝑁                                              (8) 
This is a convex quadratic programming problem with inequality constraints, and its dual problem 

can be obtained by using the Lagrange multiplier method as the formula (9), formula (10) and formula 
(11). 

min
ఈ

ଵ

ଶ
∑ ∑ 𝛼௜

ே
௝ୀଵ

ே
௜ୀଵ 𝛼௝𝑦௜𝑦௝൫𝑥௜ . 𝑥௝൯ െ ∑ 𝛼௜

ே
௜ୀଵ                                      (9) 

s. t.∑ 𝛼௜𝑦௜ ൌ 0ே
௜ୀଵ                                                               (10) 

𝛼௜ ൒ 0, 𝑖 ൌ 1,2,⋯ ,𝑁                                                            (11) 
However, in actual situations, there is almost no completely linearly separable data. In order to 

solve this problem, the concept of "soft interval" is introduced, which allows certain points to not 
satisfy the constraint 𝑦௝ሺ𝜔. 𝑥௝ ൅ 𝑏ሻ ൒ 1. In order to measure how soft this interval is, a slack variable 
𝜉௜ is introduced for each sample, so that 𝜉௜ ൒ 0, and 1 െ 𝑦௜ሺ𝜔 ∙ 𝑥௜ ൅ 𝑏ሻ െ 𝜉௜ ൑ 0. 

After increasing the soft interval, our optimization goal becomes the formula (12) and formula (13). 

min
ఠ

ଵ

ଶ
‖𝜔‖ଶ ൅ 𝐶 ∑ 𝜉௜

௠
௜ୀଵ                                                           (12) 

s. t.𝑦௜ሺ𝜔. 𝑥௜ ൅ 𝑏ሻ ൒ 1 െ 𝜉௜ , 𝜉௜ ൒ 0, 𝑖 ൌ 1,2,⋯ ,𝑁                                    (13) 
Where 𝜉௜ is the "slack variable", which represents the degree to which the sample does not meet the 

constraints. C is called the penalty parameter. The greater the value of C, the greater the penalty for 
classification. 

For samples that are linearly inseparable in a finite-dimensional vector space, map them to a 
higher-dimensional vector space, and then learn to obtain a support vector machine by maximizing the 
interval, which is a nonlinear SVM. Use x to represent the original sample point, and Φ(x) to represent 
the new vector after x is mapped to the new feature space. Then the split hyper plane can be expressed 
as fሺxሻ ൌ ω.Φሺxሻ ൅ b. 

After the low-dimensional space is mapped to the high-dimensional space, the dimensionality will 
be very large, which will cause trouble in calculating the inner product. The kernel function can be 
used, because the inner product of the kernel function and the nonlinear mapping function is the same, 
Kሺ𝑋ଵ,𝑋ଶሻ ൌ ϕሺ𝑋ଵሻ.ϕሺ𝑋ଶሻ, at this time the amount of calculation is much less than the inner product. 
Common kernel functions are polynomial kernel Kሺ𝑋ଵ,𝑋ଶሻ ൌ ሺ𝑋ଵ

்𝑋ଶሻ௡; radial basis function kernel 

(Gaussian kernel) Kሺ𝑋ଵ,𝑋ଶሻ ൌ exp ሺെ
‖௑భି௑మ‖మ

ଶఙమ
ሻ ; Laplacian kernel Kሺ𝑋ଵ,𝑋ଶሻ ൌ exp ሺെ

‖௑భି௑మ‖

ఙ
ሻ ; 

Sigmoid kernel Kሺ𝑋ଵ,𝑋ଶሻ ൌ tanhሺ𝑎ሺ𝑋ଵ
்𝑋ଶሻ െ 𝑏ሻ,𝑎, 𝑏 ൐ 0. 

4.  Experimental results 
This article chooses the LIBSVM toolbox to implement the recognition algorithm, because it is simple 
and provides many default SVM parameters[9]. We set the SVM type to C_SVC, the kernel function 
type is RBF, and at the same time, the data is scaled, and the scale range is [-1,1]. The correct rate was 
evaluated using cross-validation. This experiment selects the MSR Daily Activity 3D data set for 
verification, which is collected by the Kinect device and contains 16 action types, including RGB, 
depth, and skeleton data. 10 people, each performed each action twice, a total of 320 action samples, a 
total of 3*320 files[10]. 

In the experiment, we used the combination of dynamic features and static features to achieve 
78.88% accuracy through support vector machines. Thi Lanle [11] used dynamic time warping for 
action recognition, and the correct rate is 54% on the MSR DailyActivity3D data set. Shi Xiangbin [12] 
used the K-means clustering algorithm to extract the key frames in the human action video sequence. 
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Taking the position of the joint points in the key frame and the angle of the skeleton as features, using 
the SVM classifier for classification, the accuracy rate on the MSR Daily Activity 3D data set is 62%. 
It can be seen that the method in this paper has significantly improved the action recognition rate. 

5.  Conclusion  
In this paper, from the skeleton data obtained by Kinect, static features and dynamic features are 
extracted to represent actions; SVM classifier is used for action recognition. It is verified on the MSR 
Daily Activity 3D data set, and the experimental results show that the method in this paper improves 
the accuracy of action recognition. 
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