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Abstract. Support vector machines SVM) is a very popular algorithm used widely in the clas-
sification problem. The basic idea of SVM is to construct two parallel hyperplanes to separate 
two classes of instances and maximize the distance between the hyperplanes. In this paper, we 
propose a new algorithm called SVM-ICC-DBTCPRP one to solve the parameter optimization 
problem by improving the grid algorithm used by Fayed and Atiya. In the new algorithm there 
are two main sub-algorithms that are used to preselect the support vectors for reducing the time 
of training and preselect the parameter range to reduce the number of training respectively. Six 
typical data sets are selected to verify the effectiveness of our algorithm. The computed results 
show that our algorithm has the obvious advantage on the aspect of elapsed time than the one 
of Fayed and Atiya. 

1. Introduction 
Support vector machine (SVM) was proposed by Vapnik [1] in the 1990s and now is one of the most 
successful classification algorithms [2]. Many works for SVM have been developed to improve its 
performance and application in recent years [3-5] based on its advantages such as few tuning parame-
ters, fast classification and high generalization capability.  

The basic idea of standard SVM is to construct two hyperplanes to separate two classes of instances 
and maximize the distance between the hyperplanes, which results in a quadratic programming prob-
lem on the parameters involved in SVM. For obtaining the best-performing parallel hyperplanes of 
separating two classes, the parameters have to be carefully chosen. In fact, it is a difficulty although 
only a few tuning parameters exist in SVM. Exhaustive search method, the grid-search method, is the 
most commonly used approach, but it is time-consuming. Many approaches for avoiding an exhaustive 
grid-search have been obtained in the literature, for example, see [6-12]. However, in these methods, 
there is a disadvantage of the local convergence. In addition, the numerical methods also are used to 
find the optimal parameters in the literature. For example, in [13] Adankon and Cheriet proposed a 
method based on an approximation of the gradient of the empirical error, along with incremental 
learning, which reduced the resources required both in terms of processing time and of storage space. 
Zhang et al. [14] proposed a hybrid method in which the inter-cluster distance in the feature space 
(ICDF) is used to determine a small search interval from a larger kernel parameter search space, while 
a hybrid of the barebones particle swarm optimization and differential evolution (BBDE) is used to 
search the optimal parameter combination in the new search space.  

However, in general, these methods can not guarantee to find the global optimal solution due to the 
non-convexity of the generalization bounds. Recently, for avoiding falling into the set of local optimal 
solutions, some authors used the evolutionary methods to find the optimal parameters. For example, 
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Huang and Wang [15] proposed a method for feature selection and parameter optimization based on 
genetic algorithm. Lin et al. [16] used a simulated annealing algorithm to find the optimal parameters. 
Guo et al. [17] modified a method based on particle swarm optimization for the selection of the pa-
rameters. For the more the evolutionary methods, the readers may refer to [18-22]. Although the evo-
lutionary methods can find the global optimal parameters from the theory, an exhaustive search for the 
parameters involved in the methods has to be done, which may need a large time cost.  

The most direct and reliable method is the grid algorithm [23], which will traverse all parameter 
combinations. However, since the time complexity of the quadratic programming problem makes it 
impractical to be applied to large data sets, the complexity is further increased when an exhaustive grid 
search is used to find its optimal parameters (the kernel parameters and the penalty parameter, C). Very 
recently, to reduce the complexity, Fayed and Atiya [23] proposed an accelerated grid algorithm based 
on the C-condensation algorithm (in short, CC algoirthm), which greatly improved the speed of pa-
rameter optimization almost without the loss of accuracy. In [23], the authors prune the data points by 
removing the ones that have an extremely small chance of becoming support vectors. This is accom-
plished by using the support vectors obtained from the training of an SVM with a smaller value of C 
as the training patterns for an SVM with a slightly larger value. This can serve in reducing the grid- 
search time for the standard SVM and for the approximate methods. However, it observes that the ac-
celerated grid algorithm introduced by Fayed and Atiya [23] sensitively depends on the value of C. 
Especially, the efficiency of the CC algorithm is not up to expectation when the value of C is smaller, 
whereas it may shrink excessively when the value of C is larger. In this paper, we improve the method 
of Fayed and Atiya [23] by combining the CC algorithm with other algorithms to find the global opti-
mal parameters. Experiments showed that the training time and accuracy of our method are faster and 
better than the one of Fayed and Atiya. 

This article is organized as follows. Section 2 briefly reviews the SVM algorithm and grid algo-
rithm. In section 3, an improved CC algorithm based on Adaboost [24] is proposed to preselect support 
vector after analyzing the shortcomings of the CC algorithm. The basic principle of the parameter 
range preselection algorithm is analyzed in section 4, based on which the DBTCPRP algorithm has 
been constructed. Section 5 combines the algorithm of section 3 and section 4 to form the 
SVM-ICC-DBTCPRP algorithm. In section 6, six typical data sets are selected to verify the effective-
ness of our algorithm. The conclusions are presented in Section 7. 

2. SVM and grid algorithm 
Consider the binary classification problem with the training set       1 1 2 2, , , , , ,n ny y yx x x , where 

nRix ,  1, 1iy   . Suppose the optimal classification interface is 0Tw x b  , then the SVM is con-

structed by solving the following quadratic optimization problem [1]: 
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where :  n NR R   maps ix into a higher dimensional space to transform the problem from linearly 

indivisible to linearly separable, i  is slack variable measuring the classification loss of examples, C 

is the penalty parameter. The Lagrangian dual problem is given by 
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where  , ( ), ( ) ( ) ( )T
i j i j i jK        x x x x x x  is the kernel function. 
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from which we can derive the decision function  
   * *sgn i i if y b    K( x),x x   (4) 

The KKT condition of the above process is 
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The vector ix  that satisfies * * 1T
iw b  x  is called the support vector. By (4) it is easy to see 

that the support vector ix  does not work in the decision function when =0i . If 0i  , it can be 

derived from (5) that ( ) 1 0iy f  ix . Under this case, one has ( ) 1f  ix  for 1iy   . This fact 

means that only support vectors with 0i   play a role in the final model. So selecting the support 

vectors with 0i   in advance can greatly reduce the training time. 

The grid algorithm is an exhaustive search method that sorts and combines all possible values of 
parameter to generate a grid. After trying all the nodes of the grid, a suitable classifier will be returned, 
which is reliable but time-consuming. So for saving the training time, it is a good method that con-
structs in advance a set of possible parameter values where the optimal parameter value can be found. 

Through the analysis of SVM and grid algorithm, it is easy to see that it can improve the grid algo-
rithm of SVM by preselecting the support vectors and reducing the range of parameter values. In this 
paper, we design a new algorithm to improve the efficiency of parameter optimization of SVM. In this 
new algorithm, the support vectors are preselected and the range of parameter values is reduced before 
performing a standard grid algorithm. 

3. Support vector preselection algorithm based on improved C-condensation algorithm 
It is known that the number of support vectors is larger when the value of C is smaller and decreases 
rapidly with the increasing of the value of C. In fact, the CC algorithm is highly sensitive to the value 
of C. For correcting this shortcoming, we propose an improved CC algorithm (in short, ICC algorithm) 
by combining a support vector preselecting algorithm based on Adaboost [24] with the CC algorithm. 
We describe the ICC algorithm as follows. 

Algorithm 1: ICC 
Input: Training set T, kernel function parameter set  , Set of penalty coefficients 1 2:{ , , }nC C C C  

Output: Optimal parameter * *,C  and the final model M 
Initialization: The number of sharded data sets: SplitNum, the number of support vectors to stop 
ICC: EndCCNum, C of the primary preselection algorithm 
Split T to 1 2{ , , , }SplitNumT T T  

for 1,2, ,i SplitNum   do 
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Train an SVM model, Mi, using   and C with Ti 
SVi = Support vectors of Mi 

end for 
T= 1 2[ , , , ]SplitNumSV SV SV  

for each (   ) do  
Ti=T 
for 1,2, ,i k   do 

Train an SVM model, Mi, using   and Ci with Ti 
SVi = Support vectors of Mi 
CVi = cross-validation precision rate for Mi 
if CVi > CV then 

CV = CVi 
*=  ; 
*

iC C ； 

end if 
if NSVi > EndCCNum then 

Ti+1 = SVi 
end if 

end for 
end for 

Train an SVM model, M, using *  and *C  with T 

4. Parameter range preselection algorithm based on DBTC 
The basic idea of constructing the parameter range preselection algorithm is to select an index that can 
reflect the classification effect, traverse the kernel parameters in a large range and calculate the index 
value accordingly, and finally select the parameter range with the optimal solution of the index value 
as the center. So the index should meet the two points: it can reflect the classification effect and has a 
global optimal solution. 

In [25], it is proved that the distance between the means of two classes (in short, DBTC) can meas-
ure the classification effect and has a global maximum. Hence DBTC satisfies the two points men-
tioned above. However, since DBTC is taken as the only indicator, the more important index, i.e., pre-
cision rate, is neglected in [25]. In this paper, we first preselect the range of kernel parameters by a 
parameter range preselection algorithm constructed based on DBTC (in short, DBTCPRP algorithm), 
then use the grid algorithm to select the model with the precision rate.  

The DBTCPRP algorithm works by the manner that for the binary-classification data set, use the 
fixed C value, traverse all kernel function parameters, and calculate DBTC accordingly. In the 
DBTCPRP algorithm, if the kernel parameter corresponding to the maximum value of DBTC is 2 p , 
then the preselected parameter range is 1 1{2 ,2 ,2 }p p p  . For the multi-classification data set, calculate 
the DBTC value of each two classes, and the kernel parameter corresponding to the DBTC maximum 
value between each two classes is put as 2 , ,2m n . If the minimum is 2 p , the maximum is 2q , then 

the preselected range is 1{2 ,2 ,2 }p p q  . We describe the DBTCPRP algorithm as follows. 
Algorithm 2: DBTCPRP 
Input: Training set T, kernel function parameter set 1 2:{ , , , }k   , and the penalty coefficient C 

Output: Kernel parameter range *  
Initialization: A zero column vector of length N(the number of classes): DBTC, a null column vector 
of length N: P.  
if T is a binary-classification data set then 
 for 1,2, ,i k   do 

 Train an SVM model, Mi, using i  and C with T 

 Calculate DBTCi 
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5. SVM-ICC-DBTCPR algorithm 
The ICC algorithm and DBTCPRP algorithm are combined to form the SVM-ICC-DBTCPRP algo-
rithm in which the DBTCPRP algorithm is first used to preselect the parameters, then train the prese-
lected parameters by the ICC algorithm.  

Input

Whether it is a large data set?

Using the standard method  to 
optimize the parameters

Yes

Using Adaboost algorithm to 
preselect support vectors

Using DBTCPR algorithm to preselect the 
range of kernel parameters

Whether the number of support vectors 
is less than the minimum?

Stop the CC algorithm, continue the training 
using the current training set

CC algorithm for support vector 
machine training

Output training results

End

No

Whether all nodes are searched?

No

Yes

Yes

No

Start

 
Figure 1. The flow of SVM-ICC-DBTCPR algorithm 
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6. Experiment 
To verify the effectiveness of the algorithm, multiple data sets were selected from LIBSVM and UCI 
for experiments. They are Parabola Data Set(1000), Parabola Data Set(10000), Bank Marketing Data 
Set, Avila Data Set, Audit data set, Skin data set, and Letter Data Set. These data sets cover multiple 
dimensions such as binary-classification and multi-classification, few-attribute and multi-attribute, and 
data size. They can prove the validity of the thesis method from many angles. The detailed characteris-
tics of the datasets are shown in table 1. 

In the experiment, the gauss kernel function is used for training, and the search range of penalty 
coefficient C is 15 14 15{2 ,2 , ,2 }   , but for a very large number of data sets only 5 4 15{2 ,2 , ,2 }   is 

searched. The search range of kernel parameters   is 15 14 15{2 ,2 , ,2 }   , or 7 14 7{2 ,2 , ,2 }    for large 

data set. Four algorithms, Standard SVM, SVM-PSO, SVM-CC, and SVM-ICC-DBTCPRPC were 
used for analysis in the three dimensions, precision rate, recall rate, time of training and testing. The 
test method was five-folds cross-validation. The results are shown in Table 2 and Table 3. 

Table 1. Characteristics of data sets 
 Number of training samples Number of attributes Number of classes 

Parabola Data Set(1000) 1000 2 2 
Parabola Data Set(10000) 10000 2 2 
Bank Marketing Data Set 4521 17 2 

Avila Data Set 20867 10 12 
Audit data set 777 18 2 
Skin data set 122529 3 2 

Letter Data Set 15000 16 26 

Table 2 Experiment time, precision rate and recall rate (the best results are shown in bold) 
 Standard SVM SVM-PSO 
 Time(s) precision rate recall rate Time(s) precision rate recall rate 

Parabola Data Set(1000) 217.51 99.87% 99.91% 97.25 99.67% 99.81% 
Parabola Data Set(10000) 19044.89 99.91% 99.91% 10002.72 99.81% 99.90% 
Bank Marketing Data Set 4326.35 90.26% 89.79% 1657.23 90.26% 89.79% 

Avila Data Set 57698.12 99.32% 99.12% 24113.20 99.22% 99.00% 
Audit data set 193.94 93.10% 92.41% 100.72 92.72% 92.31% 
Skin data set 235267.25 99.98% 99.96% 92156.12 99.95% 99.96% 

 SVM-CC SVM-ICC-DBTCPRP 
 Time(s) precision rate recall rate Time(s) precision rate recall rate 

Parabola Data Set(1000) 52.12 99.87% 99.91% 9.45 99.87% 99.91% 
Parabola Data Set(10000) 8921.20 86.33% 82.36% 184.08 97.91% 97.80% 
Bank Marketing Data Set 1926 90.24% 89.87% 222.10 90.32% 90.02% 

Avila Data Set 13256.20 99.32% 99.22% 5142.02 99.42% 99.32% 
Audit data set 87.92 92.12% 92.01% 28.23 92.11% 92.59% 
Skin data set 58156.92 99.95% 99.96% 10812.01 99.98% 99.96% 

Table 3. Time-saving rate of the experiment 
 SVM-PSO SVM-CC SVM-ICC-DBTC 

Parabola Data Set(1000) 55.29% 76.04% 95.66% 
Parabola Data Set(10000) 47.48% 53.16% 99.03% 
Bank Marketing Data Set 61.70% 55.48% 94.18% 

Avila Data Set 58.21% 77.02% 91.09% 
Audit data set 48.07% 54.67% 85.44% 
Skin data set 60.83% 75.28% 95.40% 

It can be seen from Table 2 and Table 3 that the SVM-ICC-DBTCPRP algorithm hardly causes a 
decrease in accuracy and recall rate for most data sets, and even has some improvement, while the 
training and test time have a great range of improvement, especially for large-scale data, the 
time-saving rate can reach more than 95%, indicating that the algorithm is very effective. 
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7. Conclusion 
This paper presents an accelerated grid algorithm called the SVM-ICC-DBTCPRP algorithm to speed 
up the parameter optimization process of SVM. In this algorithm, we use the ICC algorithm and 
DBTCPRP algorithm to preselect support vector and to preselect the parameter range, respectively. 
The SVM-ICC-DBTCPRP algorithm improves the efficiency of support vector machine parameter 
optimization. By the experiments, we find that the SVM-ICC-DBTCPRP algorithm can reduce the 
parameter optimization time by more than 95% without affecting the classification effect for large data 
sets, and it has good adaptability to large data. 
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