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Abstract. The observational evidence for the inflationary cosmology with baryosynthesis
and dark matter/energy can be viewed as the messenger for new physics, which governed the
Universe origin, evolution and structure. To specify the physics beyond the Standard model
(BSM), underlying the modern cosmological paradigm additional model dependent messengers
are proposed, involving multi-component and composite dark matter, meta-stable particles,
primordial black holes and antimatter domains in baryon asymmetrical Universe.

1. Introduction
The data of precision cosmology strongly tighten deviations from the predictions of inflationary
model with baryosynthesis and dark matter/energy [1–6]. All these basic elements of the modern
cosmological paradigm find their physical nature in predictions of BSM models, which in their
turn involve cosmological probes for their test [5–8].

In the context of the modern cosmological paradigm we may consider the observed structure
and evolution of the Universe as the messenger of BSM physics, which needs additional model
dependent signatures to be specified. Such model dependent cosmological signatures reflect the
fundamental structure and symmetry breaking pattern of the BSM model [7–9] and can be
viewed as multi-messenger cosmological probes for new physics. Here we briefly review some
examples of these probes. They involve new stable and meta-stable particles, multi-component
dark matter, composite dark matter and dark atoms, primordial black holes and primordial
nonlinear structures, as well as antimatter stars in the baryon asymmetrical Universe as a
profound signature of strongly nonhomogeneous baryosynthesis. Such consequences are not
inevitable predictions of BSM models, but reminding Ya.B.Zeldovich one can say that ”even if
the probability for these phenomena is very low, the expectation value of their discovery would
be very high”.

In general, effects of new physics with energy scale V appear with full strength at high
energies E ≥ V . At these energies new particles with the mass characterized by the scale V can
be copiously produced, as well as their exchange is not suppressed. At smaller energies E < V
these particles can be produced in virtual states and their effects are suppressed by some power
of (E/V ).

For high energy scale V , cosmology, predicting the stages of early Universe with very high
energy density, becomes natural laboratory of new physics. Its observable signatures require
some messengers, which retain information on the processes in the very early Universe and
provide their confrontation with the astrophysical data on the phenomena, taking place at much



ICPPA 2020
Journal of Physics: Conference Series 1690 (2020) 012182

IOP Publishing
doi:10.1088/1742-6596/1690/1/012182

2

later stage of cosmological evolution. It implies sufficiently long-living particles and objects,
surviving sufficiently long period after their creation. From the view point of particle theory
such particles and objects reflect the fundamental symmetry of BSM model and mechanisms of
its symmetry breaking, making cosmological messengers tracers of the fundamental symmetry
of microworld. Here we briefly discuss some examples of the messengers of new physics.

2. Probes for dark matter physics
Nonbaryonic dark matter, dominating in the matter content of the modern Universe, is
associated with the new stable form of the nonrelativistic matter. It should be nonluminous
and must decouple from plasma and radiation before the beginning of the matter dominated
stage. The first condition follows from the ”darkness” of this form of matter. The second comes
from the condition that dark matter provides effective development of gravitational instability
in the beginning of matter dominated stage before recombination of hydrogen (see e.g. [7–9]
for reviews and references). The simplest theoretical possibility to satisfy these conditions is to
assume the existence of stable neutral Weakly Interacting Massive particles (WIMP).

2.1. From WIMP miracle to Dark Matter reality?
2.1.1. WIMP miracle The attractive feature of the WIMP dark matter candidates was their
miraculous property to explain the observed dark matter density by primordial gas of stable
particles with mass of the order of several hundred GeV with annihilation cross section of
the order of the ordinary weak interaction. These conditions naturally lead to the predicted
abundance corresponding to the measured density of dark matter.

Strong theoretical support for WIMPs came from predictions of stable lightest
supersymmetric (SUSY) neutral particles with mass and annihilation cross section,
corresponding to the desired WIMP parameter range. The advantage of supersymmetry with
SUSY scale within 1 TeV was its principle possibility to solve the problems of Standard model
related with divergence of Higgs boson mass and origin of the scale of the electroweak symmetry
breaking. The expected discovery of supersymmetric partners of ordinary quarks, leptons and
gauge bosons with the mass in the range 100 GeV-1 TeV, was the challenge for experimental
search at the LHC.

However, the results of the direct WIMP search in underground experiments are controversial,
as well as there is no positive results of SUSY particle searches at the LHC in the indicated
mass range, It stimulates the substantial extension of the list of possible dark matter particle
candidates.

2.1.2. Non-WIMP Dark Matter candidates Stability of dark matter implies stability of its
constituents, which involves new stable or very long-living particles, predicted by BSM models.
It assumes extension of the symmetry of the Standard model, which leads to new conserved
charges, corresponding the the new additional symmetry. The lightest particle, which possess
new charge is stable, if the charge is strictly conserved.

There are several strongly motivated extensions of the Standard model, predicting various
types of dark matter candidates (see e.g. [7] for review and references):

• Sterile neutrinos, having no ordinary weak interaction and involved in the see-saw
mechanism of neutrino mass generation;

• axion, a pseudo Nambu-Goldstone boson related with the Peccei-Quinn solution of the
problem of strong CP violation in QCD;

• mirror or shadow matter, restoring equivalence of left- and right- handed coordinate
systems. Being in the same space-time with the ordinary matter they have gravitational
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interaction and can also interact with matter due to strongly suppressed kinetic mixing of
neutral bososns, like mixing of ordinary and mirror photons.

• gravitino, SUSY partner of graviton in Supergravity. By construction gravitino has super-
weak semi-gravitational interaction. At very high sub-Planckean SUSY energy scale it can
be also superheavy

These extensions of the Standard model lead to non-WIMP dark matter candidates. Sterile
neutrinos, mirror or shadow particles or gravitino are superWIMPs with superweak interaction
with matter, while axions have a very mall mass, but still play the role of Cold Dark Matter. The
list of these candidates can be extended by neutral stable particles originated by any extension of
the group of the SM symmetry SU(3) x SU(2) x U(1) by any additional strict symmetry group G.
In particular, new stable colored objects that possess the corresponding new conserved charge
can form Strongly Interacting Massive Particles (SIMP).

2.1.3. Multicomponent dark matter The motivation for existence of various dark matter particle
candidates come from different solutions for the internal problems of SM. It makes possible their
co-existence and can lead to multicomponent dark matter scenarios.

In such scenarios dark matter can represent mixture of primordial particles with different
properties, like mixture of Hot and Cold Dark matter. Another possibility is co-existence of
absolutely stable and metastable particles. The latter can lead to observable effects of deviations
from the Standard cosmological scenario.

To be of cosmological significance metastable particles with the mass m must be sufficiently
long living. Their lifetime τ should be much larger than mPl/m

2. Then they retain in the Big
Bang Universe at T � m and their presence can lead to observable signatures.

2.2. Cosmoarcheology of new physics
The set of astrophysical data puts constraints on any new forms of matter present in the Universe
at various periods of cosmological evolution. The very fact of their presence means that they
contribute to the total density and such contribution is restricted by the measured density, or
effects of their presence in the period of Big Bang Nucleosynthesis or Large Scale Structure
formation.

Metastable particle with lifetime τ exceeding the age of the Universe tU should contribute the
modern dark matter density as decaying dark matter component. If leptons, quarks, gluons or
photons are among the decay products, their contributions in the cosmic ray fluxes can provide
constraints on the lifetime, branching ratios and abundance of metastable particles.

Metastable particles with lifetime τ < tU cannot be considered as the candidates for the
modern dark matter, but their presence in the period of structure formation can lead to unstable
dark matter (UDM) scenarios, which are severely constrained by the condition of the effective
growth of density fluctuations, which can be strongly suppressed after decays, if UDM dominates
in the period of large scale structure formation.

The sensitivity of astrophysical data to the presence and decays of metastable particles is
illustrated in the figure 1. It strongly depends on the contribution of the decaying particles
into the total density and on the possibility of decay products to influence the observable
features of the CMB spectrum, light element abundance or cosmic neutrino, gamma ray or
cosmic ray fluxes. This sensitivity strongly increases, if decay products influence observable
features of subdominant component, which is baryonic matter at the radiation dominated stage
and radiation at the matter dominated stage. Such sensitive probes assume specific decay
channels and are strongly model dependent. Contribution to the total density of the Universe
at various periods of cosmological evolution avoids such specific model dependence, but on this
reason is much less sensitive to the presence of new particles in the Universe.
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Figure 1. Constraints on the lifetime τ and product of relative concentration ν and mass m of
metastable particles [10].

2.3. Composite dark matter
2.3.1. Problem of stable charged particles BSM models try to avoid predictions of stable
electrically charged particles. Positively charged stable particles should bind with electrons
and form anomalous isotopes of chemical elements. The constraints on the presence of such
anomalous isotopes in the terrestrial matter put severe constraint on their abundance. Only
superheavy subPlanckean Charged Massive particles (CHAMP) can avoid these constraints due
to very small number density and rapid diffusion to the center of Earth, strongly reducing their
abundance in the sea and terrestrial layers near the surface.

Similar to baryonic matter, charged stable particles may be hidden in neutral atomic states
and play the role of dark matter. The only condition is to avoid overproduction of anomalous
isotopes in this case. The main problem is that in the expanding Universe recombination of
electrically charged particles is never complete and freezing out of free charged particles is
inevitable. Free +1 charge particles form anomalous hydrogen, severely constrained by the
experimental data. Free -1 charged particles E− form +1 charged ion (EHe) with primordial
helium nuclei, as soon as they are produced in the Big Bang Nucleosynthesis. Similar problems
arise for all positively charged stable particles and negatively charged particles with charge
−2n− 1. It leaves only −2n charged particles as possible constituents of dark atoms.

2.3.2. Multicharged stable particles Multicharged particles may be composite or elementary.
The example of composite -2 charged particles give models with new stable U -type quark. They
predict existence of stable ∆−− - like state (Ū Ū Ū). It’s positively charged antiparticle (UUU)
can bind with electrons in anomalous helium and special mechanisms are needed to suppress
their abundance. Such mechanisms may naturally appear, if the (Ū Ū Ū) excess over (UUU) is
generated similar to baryon excess in baryon asymmetrical Universe.

The balance between excess of new particles and baryon asymmetry can be established by



ICPPA 2020
Journal of Physics: Conference Series 1690 (2020) 012182

IOP Publishing
doi:10.1088/1742-6596/1690/1/012182

5

sphaleron transitions, if new particles possess electroweak SU(2) charges. Such balance with
proper (negative) sign of the excessive new particles takes place in Walking Technicolor (WTC)
models, predicting technibaryons composed of techniquarks and elementary technileptons. The
absolute values of electric charges of technibaryons and technileptons are free parameter of the
model. The only condition for the charge assignment is the cancellation of anomalies that fixes
the relationship between the charges of technileptons and technibaryons, while the absolute value
of these charges depends on the free parameter of this model. New stable charged techniparticles
may be technibaryons, if technibaryon charge is conserved, technileptons, if technilepton charge
is conserved, or both, if the both charges are conserved. In the latter case two-component
techniparticle dark matter scenario is possible. Both technibaryons and technileptons look like
elementary leptons at energies below WTC confinement.

2.3.3. Dark atoms of dark matter Independent of the mechanism of baryon excess generation,
sphaleron transitions establish equilibrium between baryon excess and excess of charged
techniparticles. Choice of reasonable parameters of the model provides excess of even negatively
charged stable techniparticles, which provides their explanation of the observed dark matter
density for the masses of the order of 1 TeV.

After Big Bang Nucleosynthesis these excessive −2n charged techniparticles bind with n
helium nuclei in dark atoms. O−− with charge -2 form OHe atoms - Bohr like systems with
O−− leptonic core and strongly interacting helium shell. The Bohr radius in OHe atom is equal
to the size of He. The lack of usual approximations of atomic physics (small size of nuclear
interacting nucleus relative to Bohr orbit and electronic shell with electroweak interaction,
supporting perturbation methods of calculations) makes proper quantum mechanical treatment
of OHe interaction with matter a very complicated and still unresolved problem.

2.3.4. Multimessenger probes for dark atoms Cosmological scenario of dark atom evolution
leads to Warmer than Cold dark matter scenario of structure formation. Owing to low number
density of nuclei OHe gas decouples from plasma and radiation before the beginning of matter
dominated stage and supports growth of density fluctuations with spectrum with slightly
suppressed short wave part as compared with the standard Cold dark matter scenario.

In spite of its strong interaction with matter (σ ≈ 210−25 cm2), only sufficiently dense matter
objects of the size R with density

ρ >
1

σRmp
, (1)

where mp is the mass of proton, are opaque for OHe, while the average matter density makes
the Galaxy transparent for it. OHe gas in the Galaxy is collisionless, but in the region of the
Galaxy center, where OHe density is higher rare OHe collisions can lead to OHe excitations.
De-excitation of OHe, excited in collisions, by emission of electron-positron pairs can provide
explanation for the excess of positron annihilation line radiation from the galactic bulge, observed
by INTEGRAL. Such explanation implies the mass of O−− in the narrow window near 1.25 TeV,
challenging the search of such stable double charged particles at the LHC.

Due to strong interaction with matter cosmic OHe is slowed down in the terrestrial matter
and cannot be detected in underground experiments by effects of nuclear recoil, used for direct
WIMP searches. However, annual modulation in low energy binding of OHe with intermediate
mass nuclei, like sodium, can explain the positive results of DAMA/NaI and DAMA/LIBRA
experiments with their puzzling contradictions with negative results of direct WIMP searches.

Created after helium production in the Big Bang Nucleosynthesis OHe can catalyze
pregalactic production of heavier nuclei, like carbon or oxygen. Captured by stars OHe can
play interesting but still unexplored role in stellar evolution. Liberated in stellar interiors and
accelerated at Supernova explosions multiple charged dark atom constituents can form high
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energy flux of exotic multiple charged leptonic component that can lead to specific type of
atmospheric showers in LHAASO experiment.

3. Messengers of very early Universe
Together with baryon asymmetry or primordial gas of dark matter particles physics of very
early Universe can provide many other model dependent observable tracers. Second order phase
transitions can lead to formation of topological defects like monopoles, strings, walls or many
other types of stable or unstable topological defects. Strong first order phase transitions can
be the source of gravitational wave background. These processes can lead to appearance of
inhomogeneities in homogeneous and isotropic Universe.

One of the profound signature of strong inhomogeneity of very early Universe is formation
of primordial black holes. Their spectrum contains information on the mechanisms of their
formation, reflecting the fundamental structure of the particle theory at very high energy
scale [7, 11].

3.1. Primordial Black Holes as the tracer of new physics
To form black hole in the expanding Universe, one should stop its expansion within the
cosmological horizon [12]. It corresponds to nonhomogeneity δ = δρ/ρ ∼ 1 in the nearly
homogeneous and isotropic Universe with dispersion of small density fluctuations〈

δ2
〉

= δ2o � 1. (2)

Probability for such a high amplitude fluctuation depends on the equation of state p = γε (where
p is pressure, ε is energy density and γ = 0 for matter dominance (MD) and γ = 1/3 for radiation
dominated (RD) stage) and is given by [13]

WPBH ∝ exp

(
− γ2

2 〈δ2〉

)
. (3)

This probability is exponentially suppressed for small amplitude density fluctuations at the RD
stage. At MD stage there is no exponential suppression. It makes primordial black holes a
sensitive indicator of early MD stages [14,15].

3.1.1. Physics of early MD stages Early MD stage may be a consequence of existence of a
supermassive metastable particle, dominating in the Universe before decay [11, 14, 15]. If such
particles with mass m are created in the Big Bang Universe with frozen out relative abundance
ν = nm/nr, where nm and nr are number densities of considered particles and relativistic species,
respectively, at the temperature T < To = νm, corresponding to the period t > to = mPl/m

2

such particles start to dominate in the Universe until their decay at t = τ , where τ is the particle
lifetime.

Growth of density fluctuations at the MD stage leads to formation of gravitationally bound
systems, separated from cosmological expansion. Evolution of these systems can lead to
formation of black holes, retaining in the Universe at t > τ , when particles, dominating in
the Universe, decay.

The minimal estimation of the probability of PBH formation is independent on the nature
of particles, being determined by direct collapse into black hole of specially homogeneous and
isotropic configurations, after they separate from the general expansion. This probability is
given by [14]

WPBH ∝ δ13/2o . (4)
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If configuration is specially homogeneous and isotropic it contracts within its gravitational radius

as soon as it separates from cosmological expansion at t1 ≈ t0δ
−3/2
o . This mechanism leads to

a flat spectrum of PBH masses ranging from Mmin = m2
Plto to the maximal mas, determined

by the condition that the configuration can separate from expansion and collapse in black hole
before particles decay at t = τ .

However, dominant part of configurations don’t contract directly into black holes and form
gravitationally bound systems, whose evolution strongly depends on the nature of particles,
dominating at the MD stage.

If gas of massive particles within configuration is collisionless, gravitationally bound system
of point like masses collapses into black hole due to evaporation of energetic particles in binary
gravitational collisions at the timescale tevbin = t1N/ lnN [16] or due collective effects at the
timescale tevcol = t1N

2/3 [17], where N � 1 is the number of particles in the gravitationally
bound system [11].

If gas of massive particles is dissipational, it evolution to black holes takes place at much
smaller timescale, comparable with t1. In particular, if magnetic monopole abundance is
not suppressed by inflation and magnetic monopoles dominate in the Universe before their
abundance is suppressed by monopole-antimonopole annihilation in gravitationally bound
systems formed at the stage of their dominance, collapse into black holes turns out to be more
rapid, than annihilation in these systems and magnetic monopole overproduction would convert
into overproduction of PBHs [11,18].

Inflation can end by sufficiently long MD stage of massive scalar field dominance, which can
also result in PBH formation [19].

3.1.2. PBH formation in first order phase transitions If inflation ends by first order phase
transition or the symmetry breaking phase transition is a strong first order, the process of
bubble nucleation can lead to black hole production in bubble wall collisions [20]. In the course
of transition bubbles of true vacuum, expanding in the false vacuum, collide and in the collision
area the energy of bubble walls converts into a false vacuum bag, which separates from walls
and pending on its mass either collapses in black hole [21] or converts in oscillon [22].

Bubble collisions become effective, when the bubble nucleation rate becomes equal to the
rate of expansion, H, and the mass of forming black holes is determined by the energy of the
false vacuum within a region with typical size of 1/H.

3.2. Primordial nonlinear structures
Primordial objects created in the very early Universe seem to be constrained by the small size
of cosmological horizon. However, inflation can provide large scale correlations in the space
distribution of these objects, giving rise to the large scale primordial structures.

3.2.1. Archioles - large scale correlations of energy density of the axion-like fields In the axion-
like models a complex scalar field Ψ = ψ exp (iθ) acquires after spontaneous symmetry breaking
of global U(1) symmetry vacuum expectation value 〈ψ〉 = f , leaving continuous degeneracy of
vacua with arbitrary values of the phase θ. This continuous degeneracy is broken by explicit
symmetry breaking term

Veb = Λ4(1− cos θ). (5)

This term is negligible, if f � Λ. In the axion models it doesn’t exist at high temperature and
appears due to instanton effects in the period of QCD phase transition. Then at T ∼ Λ takes
place the second phase transition, in which continuous degeneracy of vacua is broken by the term
equation (5) and the vacua have discrete degeneracy, corresponding to θvac = 0, 2π, 4π.... The
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value of phase θ − θvac acquires the meaning of the amplitude of axion field, which determines
the energy density of the axion field oscillations.

If first phase transition takes place after reheating, the continuous degeneracy of phase leads
to singularities, having the geometric place of lines - axion strings.

After the second phase transition vacua with different values of θvac are separated by domain
walls, surrounded by strings. This vacuum defect structure is unstable and rapidly decays,
but the distribution of axion energy density follows the initial structure of walls-surrounded-
by-strings. Since 80% of axion string length corresponds to infinite strings, this structure
provides large scale correlation in the distribution of axion energy density (see [7] for review
and references).

3.2.2. Clusters of massive PBHs If the first phase transition takes place at the inflationary
stage, the now observed part of the Universe acquires at the corresponding e-folding Ni = 60
unique value of phase θi.

However, at successive steps of inflation with smaller e foldings N < Ni the value of phase
experiences fluctuations

δθ ∼ Hi

2πf
, (6)

where Hi is the Hubble constant at the inflationary stage. Therefore, if θi < π at N = Ni in
some smaller regions fluctuations of θ can lead to values θ > π. At successive stages of inflation
with smaller N fluctuations can lead in some smaller regions to the value of θ < π. This process
continues until the end of inflation.

In the result, at successive second phase transition, which takes place after reheating at
T ∼ Λ � f , the regions with θ < π and θ > π should be separated by closed domain walls.
The process described above leads to a system of closed walls. Collapse of closed walls results
in formation of black holes, which are not distributed stochastically but appear in clusters, in
which black holes of smaller mass are created around the locally most massive black hole [24].

This mechanism leads to formation of clusters of PBHs with masses, determined by the
fundamental parameters of the model f and Λ, which can have stellar and superstellar values.
The minimal mass is determined by the condition that the width of domain wall (∼ f/λ2)
doesn’t exceed the size of the gravitational radius of the wall. It gives [23]

Mmin = f(
mPl

Λ
)2. (7)

The principally maximal mass of such PBHs is determined by the condition that the wall does
not dominate locally before it enters the cosmological horizon. Otherwise, local wall dominance
leads to a superluminal a ∝ t2 expansion for the corresponding region, separating it from the
other part of the universe. This condition corresponds to the mass [11]

Mmax =
mPl

f
mPl(

mPl

Λ
)2. (8)

Formation of PBHs in the collapse of closed walls is accompanied by the primordial
gravitational wave (GW) background. Its spectrum is peaked at

ν0 = 3× 1011(Λ/f) Hz

and the energy density can be estimated as [11] ΩGW ≈ 10−4(f/mPl). At f ∼ 1014 GeV this
primordial gravitational wave background can reach ΩGW ≈ 10−9. For the physically reasonable
values of 1 < Λ < 108 GeV the maximum of the spectrum corresponds to

3× 10−3 < ν0 < 3× 105 Hz. (9)
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This range may be within the reach of LIGO-VIRGO and future LISA detection of gravitational
waves and this prediction may be of interest for interpretation of the recent results of the
NANOGrav Collaboration [25].

The primordial origin of the observed massive and supermassive black holes [26] may find
additional support in the recent detection by LIGO and VIRGO collaborations of gravitational
wave signal from a binary black hole merging with total mass 150Modot [27], corresponding to
the gap in the predicted BH masses from first massive stars, can evidence for primordial origin
of massive BHs [28].

3.3. Antimatter stars as probes for nonhomogeneous baryosynthesis
Any mechanism of baryosynthesis can under some conditions predict nonhomogeneous
distribution of the baryon excess. In the extreme case, nonhomogeneity can lead not only
to the spatial change of baryon asymmetry, but can also change its sign, so that antimatter
excess can appear in some regions of baryon asymmetrical Universe [29–33].

Sufficiently large antimatter domains, corresponding to the mass, exceeding 103Modot can
survive in the matter surrounding and form antimatter globular cluster in our Galaxy. Owing
to its situation in the galactic halo, where the gas density is low, and the absence of significant
amount of matter gas within the cluster, γ radiation from this cluster, can come dominantly from
the surfaces of antimatter stars. It makes such object rather faint gamma source. Antimatter,
lost by the cluster annihilates with the matter gas and is the source of gamma background. It
puts upper limit on the mass of cluster around 105Modot.

Antimatter supernova explosions can accelerate antinuclei and generate heavy antinuclear
component of cosmic rays. Since the estimated flux of secondary cosmic antihelium, originated
from cosmic ray interaction with matter, is far beyond the sensitivity of AMS02 experiment,
detection of antihelium in this experiment would be a very strong evidence for its primordial
nature and for existence of antimatter stars in our Galaxy [34]. It may provide distinction of
this mechanisms from other predictions of possible forms of antimatter in our Galaxy [35].

The first claims on the detection of antihelium events in the AMS02 experiment can hardly
find explanation by natural astophysical sources [36] and, if confirmed in the future data analysis,
may strongly evidence for the existence of antimatter stars in our Galaxy.

4. Conclusion
Multimessenger cosmology of new physics deals with hypothetical phenomena, which are not
predicted with necessity in the framework of the now standard cosmological paradigm. Being
model dependent cosmological consequences of BSM physics, their signatures can specify
the underlying particle models and provide their effective selection. Positive results of the
searches for such signatures would lead to nonstandard deviations from the modern cosmological
standards, specifying true cosmological scenario and fundamental structure of the microworld,
on which it is based.
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