
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Masses of two Higgs doublets within effective
theory with four-quark interactions
To cite this article: A A Osipov and M M Khalifa 2020 J. Phys.: Conf. Ser. 1690 012075

 

View the article online for updates and enhancements.

You may also like
In vitro study of cataract extraction by
bursts of microsecond 1.54-m laser pulses
A.V. Belikov, S.N. Smirnov, Yu.N. Batov et
al.

-

Scale effects in tribological properties of
solid-lubricating composites made of ultra-
high molecular weight polyethylene filled
with calcium stearate particles
S A Lurie, D B Volkov-Bogorodskiy, A G
Knyzeva et al.

-

Some features of the temperature-
pressure dependence of the effective
thermal conductivity of rocks
S N Emirov, A A Aliverdiev, Yu P
Zarichnyak et al.

-

This content was downloaded from IP address 3.21.43.192 on 13/05/2024 at 17:10

https://doi.org/10.1088/1742-6596/1690/1/012075
https://iopscience.iop.org/article/10.1070/QEL17959
https://iopscience.iop.org/article/10.1070/QEL17959
https://iopscience.iop.org/article/10.1070/QEL17959
https://iopscience.iop.org/article/10.1088/1757-899X/124/1/012035
https://iopscience.iop.org/article/10.1088/1757-899X/124/1/012035
https://iopscience.iop.org/article/10.1088/1757-899X/124/1/012035
https://iopscience.iop.org/article/10.1088/1757-899X/124/1/012035
https://iopscience.iop.org/article/10.1088/1742-6596/1683/3/032044
https://iopscience.iop.org/article/10.1088/1742-6596/1683/3/032044
https://iopscience.iop.org/article/10.1088/1742-6596/1683/3/032044
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssPasLLbHuzXv-f4rNCmkLy8p0Bs23Zl-uz9f8Ylz2ojrv8ke01qDmfdutoloVx3h4AqrAE-_AHjWS95uVTdMIJX-HCJqPihwMMWqr8PGAamoeU3MClmVuPQo0706ArhNrzXy__9SHNxWc0kETcnbskoB5H4-UjO4zaL3RWeHwGxdl8K23A5k0_vIkWwIo3NuZxw2nfsearrOYZl1QS00SwhnXCDA2DsNdAubNg0UK45Q44BgfMw2VrKvXnd5r2cht_P79wlDZtZJ1lKmJiwChts-q2fJNAVuNKd_N0hqDRmigWVpH77nuO5qchqxDfYSQLB7FjAQlBF9XuL-zwUdTqZP-gWQ&sig=Cg0ArKJSzOiDjKT_EAM2&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICPPA 2020
Journal of Physics: Conference Series 1690 (2020) 012075

IOP Publishing
doi:10.1088/1742-6596/1690/1/012075

1

 

 

 

 

Masses of two Higgs doublets within effective theory with 

four-quark interactions 

A A Osipov
1
 and M M Khalifa

2,3
 

1 Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia 
2 Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141701 

Russia 
3 Department of Physics, Al-Azhar University, Cairo, 11751 Egypt 

E-mail: aaosipov@jinr.ru, mkhalifa@phystech.edu 

Abstract. The composite Higgs scenario in the context of the effective model with 𝑆𝑈(2)𝐿 ×
𝑈(1)𝑅 symmetric four-fermion interaction proposed by Miransky, Tanabashi and Yamawaki 

(MTY) is considered. The low-energy dynamics of the model is described by the effective 

Lagrangian obtained by the Schwinger-DeWitt technique. The questions of the Nambu sum 

rule and the spectrum of Higgs states are addressed in detail. 

1.  Introduction 

The top condensation models can be used to explore the origin of mass, for instance, the reason behind 

the greatness of top quark mass compared with other known quarks [1-10]. In these models, at high 

energies 𝛬 ≫ 𝛬𝐸𝑊 ≈ 250 𝐺𝑒𝑉, the  𝑆𝑈(2)𝐿 × 𝑈(1)𝑅 gauge symmetry group of electroweak 

interactions is dynamically broken by effective four-quark interactions. Owing to a strong coupling, in 
the fermion spectrum of the theory, a gap appears (the nonzero mass of the t-quark) and, as a 

consequence, the boson condensate is formed predominantly of the third-generation quarks. The 

collective excitations of the condensate manifest themselves in the form of boson modes associated 

with composite (quark–antiquark) Higgs bosons, the dynamics of which at low energies 𝜇 ≪ 𝛬 is 

described by an effective action which can be found by integrating out the short-distance components 

of quark fields at leading 1/𝑁𝑐 order, where 𝑁𝑐 is the number of the color degrees of freedom of 

quarks. It is supposed that induced four-quark interactions should explain the origin of the Higgs 
sector of the Standard Model (SM). 

The minimal top-condensation models (see, e.g., [8]) do not contain new particles and are entirely 

consistent with the SM at low energies 𝜇~𝛬𝐸𝑊, with the only difference being that the Higgs field is a 
composite state. One serious phenomenological problem of this approach is the too high mass of the 

Higgs particle 𝑚𝐻 = 2𝑚𝑡. From the theoretical point of view, this result is understandable, since it is 

an analogue of the known relation that appears in the Nambu–Jona– Lasinio (NJL) model [11] for the 

mass of the scalar fermion–antifermion bound state ( 𝜎 meson) 𝑚𝜎 = 2𝑚𝑓, where 𝑚𝑓 is the mass of 

one of the two constituent fermions. The generalized form of this equation is known as the Nambu 

sum rule [12–14]. According to this hypothesis, the boson modes in a four-fermion-interaction system 

can be united into pairs, so-called Nambu partners; for each of the pairs, the equality 𝑚1
2 + 𝑚2
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4𝑚𝑓
2, which couples the gap of the fermionic spectrum 𝑚𝑓 with the corresponding gaps of the bosonic 

spectrum 𝑚1 and 𝑚2, holds true. 

2.  The MTY model 

Let us consider the model of [6, 7]. Its Lagrangian contains 𝑆𝑈(2)𝐿 × 𝑈(1)𝑅 gauge-invariant four-

quark interactions that approximate physics unknown to us above a certain 𝛬 ≫ 𝛬𝐸𝑊 =

(√2𝐺𝐹)
−1/2

= 250 𝐺𝑒𝑉 scale as 

 

 ℒ4𝜓 = g1(𝜓̅𝐿
𝑎𝜓𝑅

𝑏)(𝜓̅𝑅
𝑎𝜓𝐿

𝑏) + g2(𝜓̅𝐿
𝑎𝜓𝑅

𝑏)(𝑖𝜏2)𝑎𝑐(𝑖𝜏2)𝑏𝑒(𝜓̅𝐿
𝑐𝜓𝑅

𝑒 ) 

+g3(𝜓̅𝐿
𝑎𝜓𝑅

𝑏)𝜏3
𝑏𝑐(𝜓̅𝐿

𝑐𝜓𝑅
𝑎) + ℎ. 𝑐.. 

(1) 

Here, the summation over the repeated Latin superscripts ( 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 = 1,2) is supposed, whose 

superscripts correspond to the flavor degrees of freedom of the quark fields 𝜓. For the sake of 

simplicity, only the third-generation quarks are considered, i.e., 

 𝜓 = (
𝜓1

𝜓2
) = (

𝑡
𝑏

). (2) 

The projection on the chiral states 𝜓𝐿 = 𝑃𝐿𝜓 and 𝜓𝑅 = 𝑃𝑅𝜓 is performed by the 𝑃𝐿 =
1

2
(1 − 𝛾5) and 

𝑃𝑅 =
1

2
(1 + 𝛾5) operators. The independent constants 𝑔𝑖  are positive and have the dimension [𝑔𝑖] =

𝑀−2. The set of the 𝑆𝑈(2) matrices is standard, 𝜏𝑖(𝑖 = 1,2,3) are the Pauli matrices. The theory under 
consideration is dynamically equivalent to the semi-bosonized theory described by the generating 

functional 

 𝑍 = ∫ 𝑑𝜎𝛼𝑑𝜋𝛼𝑑𝜓𝑑𝜓̅ 𝑒𝑥𝑝𝑖 ∫ 𝑑4𝑥[𝜓̅(𝑖𝛾𝜇𝐷𝜇 + 𝜎 + 𝑖𝛾5𝜋)𝜓 + ℒ4𝜓(𝜎, 𝜋)], (3) 

into which we introduced the boson variables 𝜎 = 𝜎𝛼𝜏𝛼  𝑎𝑛𝑑 𝜋 = 𝜋𝛼𝜏𝛼 (it is supposed here that the 

Greek subscript runs through the values 𝛼 =  0, 1, 2, 3 and 𝜏0 = 1). The expression 

 ℒ4𝜓(𝜎, 𝜋) = −
1

𝑔̅2
[(𝑔1 + 𝑔2)(𝜋0

2 + 𝜎𝑖
2) + (𝑔1 − 𝑔2)(𝜎0

2 + 𝜋𝑖
2) − 2g3(𝜋0𝜋3 +

𝜎0𝜎3 − 𝜎1𝜋2 + 𝜎2𝜋1)], 
(4) 

where 𝑔̅2 = 𝑔1
2 − 𝑔2

2 − 𝑔3
2, is the bosonized form of Lagrangian density (1). The form (4) is 

convenient for the 1/𝑁𝑐 expansion of the theory since, already in (3), the integration over the quark 

fields is possible. The covariant derivative of the quark fields 

 𝒟𝜇𝜓 = (𝜕𝜇 − 𝑖𝛤𝜇)𝜓, 

𝛤𝜇 = 𝑔𝑇𝑖𝐴𝜇
𝑖 𝑃𝐿 + 𝑔′𝐵𝜇(𝑃𝐿𝑇3 − 𝑄), 

(5) 

contains the gauge fields of the electroweak interactions 𝐴𝜇
𝑖  and 𝐵𝜇  together with corresponding 

coupling constants 𝑔 and 𝑔′; the generators of the 𝑆𝑈(2) group are 𝑇𝑖 = 𝜏𝑖 2⁄ ; 𝑄 = 𝑇3 + 1 6⁄  is the 
quark charge matrix. 

3.  Schwinger-DeWitt expansion and gap equation 
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It is known [15–18] that the contribution of one-loop quark diagrams in the real part of the effective 
action in Euclidean space can be represented in the form of an asymptotic series over the proper time t 

as 

 
𝑅𝑒𝑆E = −

1

2
∫

𝑑𝑡

𝑡3
∫

𝑑4𝑥𝐸

(4𝜋)2
∑ 𝑡𝑛

∞

𝑛=0

𝑡𝑟(𝑎𝑛) (6) 

where 𝑎𝑛 is the Seeley–DeWitt coefficients. They are expressed by field functions and, in particular, 

have the form 𝑎0 = 1, 𝑎1 = −𝑌 , 𝑎𝑛𝑑 𝑎2 = 𝑌2 2⁄ − 𝐹𝜇𝑣
2 12⁄ . We do not need the rest of the 

coefficients, since only at the coefficients with the subscript 𝑛 = 0,1,2 do the integrals over the proper 

time diverge and therefore dominate in asymptotic expansion (6). To regularize them, we introduce 

two dimensional parameters. They characterize the ultraviolet 𝛬 and infrared 𝜇 cutoff scales. As 𝑎0 

does not contain fields, we need only two integrals, which we denote by 𝐶1 and 𝐶2 and represent in the 

form 

 
      𝐶1 = ∫

𝑑𝑡

𝑡2

1 𝜇2⁄

1 𝛬2⁄ = 𝛬2 − 𝜇2,           𝐶2 = ∫
𝑑𝑡

𝑡

1 𝜇2⁄

1 𝛬2⁄ = 𝑙𝑛
𝛬2

𝜇2 . (7) 

where 𝛬 is the scale on which the physics unknown to us is approximated by effective four-quark 

interactions (1) and 𝜇 is a low-energy scale (𝛬 ≫ 𝜇 ), with respect to which the one-loop contributions 

are determined. This is done in such a way that, at 𝛬 = 𝜇, all contributions induced by the 1/𝑁𝑐 

expansion vanished, which is usually required [8]. 

The model in question yields the following analytical expressions for the field functions contained in 

𝑎𝑛, which we write in the Minkowski spacetime metric as 

 

𝑌 = 𝜎2 + 𝜋2 + 𝑖𝛾5[𝜎, 𝜋] − 𝑖∇𝜇𝛾𝜇(𝜎 + 𝑖𝛾5𝜋) −
𝑖

4
[𝛾𝜇, 𝛾𝑣]𝐹𝜇𝑣, 

𝐹𝜇𝑣 = 𝜕𝜇𝛤𝑣 − 𝜕𝑣𝛤𝜇 − 𝑖[𝛤𝜇, 𝛤𝑣], 

∇𝜇𝜑 = 𝜕𝜇𝜑 − 𝑖[𝛤𝜇 , 𝜑]. 

(8) 

The consideration of the contribution leading in 1/𝑁𝑐 at low energies results in an additional 

summand described by the Lagrangian density as 

 ∆ℒ = −
1

32𝜋2 [𝐶1𝑡𝑟(−𝑌) + 𝐶2𝑡𝑟 (
𝑌2

2
−

1

12
𝐹𝜇𝑣

2 )]. (9) 

In this case, the complete low-energy theory of fermions and bosons is described by the 𝑆𝑈(2)𝐿 ×
𝑈(1)𝑅 gauge-invariant Lagrangian density as 

 ℒ = 𝜓̅(𝑖𝛾𝜇𝐷𝜇 + 𝜎 + 𝑖𝛾5𝜋)𝜓 + ℒ4𝜓(𝜋, 𝜎) + ∆ℒ. (10) 

The last term does not change the initial theory at high energies 𝛬, since ∆ℒ = 0  at 𝛬 = 𝜇, but it 

becomes critical at low energies as it contains the potential of the composite Higgs particles, their 
couplings with the gauge fields, and kinetic terms of free bosonic fields. 

Here, we restrict ourselves to consideration of only the Higgs sector of the model. It can be easily 

established from (10) that the corresponding Lagrangian density has the form 

 ℒH = C̅1(Φ1
+Φ1 + Φ2

+Φ2) − 2C̅2 [
1

4
(Φ1

+Φ1 + Φ2
+Φ2)2 + (Φ1

+Φ1)(Φ2
+Φ2) −

(Im(Φ1
+Φ2))

2
] −

1

𝑔̅2
[(𝑔1 − 𝑔2)Φ1

+Φ1 + (𝑔1 + 𝑔2)Φ2
+Φ2 + 2𝑔3Re(Φ1

+Φ2)], 
(11) 



ICPPA 2020
Journal of Physics: Conference Series 1690 (2020) 012075

IOP Publishing
doi:10.1088/1742-6596/1690/1/012075

4

 

where 𝐶̅1,2 = 𝑁𝐶𝐶1,2/(4𝜋2) and the scalar and pseudoscalar fields are united into two doublets as 

 
𝛷1 =  (

𝜋2 + 𝑖𝜋1

𝜎0 − 𝑖𝜋3
),       𝛷2 =  (

𝜎1 − 𝑖𝜎2

−𝜎3 + 𝑖𝜋0
). (12) 

Supposing that the vacuum expectations of the 𝜎0 and 𝜎3 fields may differ from zero (〈𝜎0〉 = −𝑚0 and 
〈𝜎3〉 = −𝑚3 ), we find the minimum potential energy conditions (the gap equations) to determine 𝑚0 

and 𝑚3 as 

 

m0(𝑔1 − 𝑔2) − m3𝑔3 = 𝑔̅2m0[C̅1 − (𝑚0
2 + 3𝑚3

2)C̅2], 

m0(𝑔1 + 𝑔2) − m0𝑔3 = 𝑔̅2m3[C̅1 − (𝑚3
2 + 3𝑚0

2)C̅2]. 
(13) 

The nonzero vacuum expectations lead to a gap in the spectrum of fermions. As a consequence, the 

top and bottom quarks acquire nonzero mass as 

 𝑚𝑡 = 𝑚0 + 𝑚3,   𝑚𝑏 = 𝑚0 − 𝑚3. (14) 

The mass of the quarks differs greatly, m𝑡 ≫ m𝑏 therefore, a phenomenologically acceptable solution 

of the gap equations should be sought near the equal values 𝑚3 ≈ 𝑚0. 

 The quadratic form over fields in ℒ𝐻 is diagonalized by two orthogonal rotations. The first rotation 

characterized by the angle 𝜃 diagonalizes the charged modes. The second rotation by the angle 𝜃′ is 

associated with the diagonalization of the neutral particles. The tangents of the angles are expressed by 

the vacuum averages 𝑚0 and 𝑚3 and the four-quark interaction constants 𝑔2 and 𝑔3, 

 𝑡𝑎𝑛𝜃 =
𝑚3

𝑚0
,          𝑡𝑎𝑛2𝜃′ = 3𝑡𝑎𝑛2𝜃 − 2

𝑔3

𝑔2
 , (15) 

and the transformations themselves have the forms 

 𝛷1 = 𝑐𝑜𝑠𝜃𝐻1 + 𝑠𝑖𝑛𝜃𝐻2, (16) 

 𝛷2 = 𝑐𝑜𝑠𝜃𝐻2 − 𝑠𝑖𝑛𝜃𝐻1, (17) 

where 

 
𝐻1 = (

𝜙1 + 𝑖𝜙2

ℎ0 − 𝑚 − 𝑖𝜙3
),    𝐻2 = (

ℎ1 − 𝑖ℎ2

−ℎ3 + 𝑖𝜙0
). (18) 

Here, 𝑚 = √𝑚0
2 + 𝑚3

2 and the neutral scalar Higgs fields 𝜒1and𝜒2 are introduced through the rotation 

 ℎ0 = 𝑐𝑜𝑠(𝜃 − 𝜃′)𝜒1 + 𝑠𝑖𝑛(𝜃 − 𝜃′)𝜒2, (19) 

 ℎ3 = 𝑐𝑜𝑠(𝜃 − 𝜃′)𝜒2 − 𝑠𝑖𝑛(𝜃 − 𝜃′)𝜒1, (20) 

which diagonalizes the quadratic form formed by the fields ℎ0 and ℎ3. It should be noted that, in new 

variables, the nonzero vacuum expectation develops only the field 𝐻1, 〈𝐻1〉 = (0, −𝑚). Such behavior 

is a characteristic of any model with two Higgs states [19]. 

4.  The spectrum and Nambu sum rule 

Before writing expressions for the mass of the Higgs particles, we should make two remarks.  The first 

remark refers to the form of the gap equations. They can be rewritten in such a way that the quadratic 

divergence C̅1  and the logarithmic divergence C̅2 are completely separated as 
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𝑔̅2C̅1 = 𝑔1 −

2𝑔2

𝑐𝑜𝑠2𝜃
+

2𝑔3

𝑠𝑖𝑛2𝜃
, (21) 

 𝑔̅2𝑚2C̅2 = −
𝑔2

𝑐𝑜𝑠2𝜃
+

𝑔3

𝑠𝑖𝑛2𝜃
 , (22) 

This form proves to be useful for calculating the spectrum. The second remark refers to the 

redefinition of the Higgs fields. The point is that the expression for the kinetic part of the free Higgs 

fields contained in (9) has a nonstandard form as 
 

 ℒ𝐻
𝑘𝑖𝑛 =

1

2
C̅2 (|𝐷𝜇𝐻1|

2
+ |𝐷𝜇𝐻2|

2
), (23) 

where the covariant derivative is determined as 

 𝐷𝜇𝐻1,2 = (𝜕𝜇 − 𝑖
𝑔

2
𝑇𝑖𝐴𝜇

𝑖 − 𝑖
𝑔′

2
𝐵𝜇) 𝐻1,2. (24) 

To make the expression assume the standard form, let us redefine the fields 𝐻1,2 → 1 √C̅2⁄ 𝐻1,2 . This 

is supposed in what follows. 

Given the aforementioned, from (10) we obtain[20,21] 

 𝑚𝜒1
2 = 4𝑚2 +

2g2

g̅2C̅2
(

1

cos2θ
−

1

cos2θ′
), (25) 

 

 𝑚𝜒2
2 = 4𝑚2 +

2g2

g̅2C̅2
(

1

cos2θ
+

1

cos2θ′
), (26) 

 𝑚𝜙0

2 =
4g2

g̅2C̅2cos2θ
, (27) 

 𝑚
ℎ±
2 =

4g2

g̅2C̅2sin2θ
, (28) 

 𝑚𝜙𝑖

2 = 0. (29) 

Hence it follows that, of the eight spinless states of the theory, three are massless Goldstone modes 

that are absorbed by the gauge fields (the Higgs mechanism). As can be easily seen from (22), the 

other five states satisfy the sum rule as 

 𝑚𝜒1
2 + 𝑚𝜒2

2 + 𝑚𝜙0

2 =
4g3

g̅2C̅2sin2θ
, (30) 

 𝑚ℎ+
2 + 𝑚ℎ−

2 =
4g3

g̅2C̅2sin2θ
. (31) 

This result differs somewhat from the Nambu sum rule. Although the sum of the squared masses of the 

neutral modes and the analogous sum for the charged modes equal the same expression, its value does 

not coincide with 4𝑚𝑡
2, as is required by the Nambu sum rule. Furthermore, instead of two Nambu 

partners, the first expression contains contributions by three states, which also differentiates this result 
from the standard rule. What are the reasons for that? To answer this question, we write two other 

relations that are also a consequence of mass formulae (25)–(29) as follows: 

 𝑚𝜒1
2 + 𝑚𝜒2

2 = 𝑚𝜙0

2 + 8𝑚2, (32) 

 𝑚ℎ+
2 + 𝑚ℎ−

2 = 2𝑚𝜙0

2 + 8𝑚2. (33) 
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We should recall that 2𝑚2 = 𝑚𝑡
2 + 𝑚𝑏

2. It can be seen from this that a mass of meson that is different 

from zero prevents the Nambu sum rule from being satisfied.  

As was mentioned above, in the absence of the interaction with the coupling constant 𝑔2, the theory 

has an additional symmetry. It plays the role of the global Peccei–Quinn symmetry [22, 23] and 

prevents the meson, which can be interpreted as an “electroweak axion”, from acquiring mass. Indeed, 

it can be proven that, at 𝑔2 = 0, the masses of the particles assume the values 

𝑚𝜒1
= 2𝑚𝑏         𝑚𝜒1

= 2𝑚𝑡 , 𝑚ℎ± = 2𝑚        𝑚𝜙0
= 0. (34) 

Expressions (34) are entirely consistent with the Nambu sum rule. This indicates that it is the 

interaction that breaks the symmetry responsible for their breaking in (32)–(33).  

5.  Numerical estimates  

Let us determine to which degree the four-quark interactions responsible for the 𝑈(1)𝐴  symmetry 

breaking modify the Higgs state spectrum. To do this, we express the mass formulae through 

dimensionless parameter that relates the ratio between the constants g3and g2to the mixing angle 𝜃 as 

g2

g3
= 𝑎tan2𝜃. (35) 

By virtue of the gap equations, the spectrum of the Higgs particles is expressed only through the mass 

of the quarks and the above parameter 𝑎. Thus, according to (15) 

 tan2𝜃′ = (3 − 2𝑎)tan2𝜃, (36) 

we conclude that, at 𝑎 > 2 3⁄ , the angle 𝜃′ < 0 and the spectrum has the form 

 𝑚𝜒1
2 =

2m2

𝑎−1
(2𝑎 − 1 − ∆), 

 
(37) 

 𝑚𝜒2
2 =

2m2

𝑎−1
(2𝑎 − 1 + ∆), 

 
(38) 

 𝑚𝜙0

2 =
4m2

𝑎−1
, 

 
(39) 

              𝑚
ℎ±
2 =

4m2𝑎

𝑎−1
, (40) 

where  ∆= √𝑐𝑜𝑠22𝜃 + (3 − 2𝑎)2𝑠𝑖𝑛22𝜃. 

If parameter 𝑎 is fixed by the known value of the mass of the standard Higgs state 𝑚𝜒1
= 125 𝐺𝑒𝑉 →

𝑎 = 4.84, the above formulae yield the following numerical estimates: 𝑚𝜒2
= 346 GeV, 𝑚ℎ± =

275𝐺𝑒𝑉, and 𝑚𝜙0
= 125 𝐺𝑒𝑉. The fact that the mass 𝑚𝜒1

= 𝑚𝜙0
shows that ∆= 2𝑎 − 3; i.e., the 

angle 𝜃 = 𝜋 4⁄ . To make the final conclusion about the reasonableness of these estimates, the 

renormalization group approach must be applied, the findings of which are set forth in a separate 

study. A numerical estimation of the effect of considering the  𝑈(1)𝐴 symmetry breaking also seems 

to be of interest. Since the right term of sum rule (30)–(31) can be written as 

4𝑔2

𝑔̅2𝐶2̅𝑠𝑖𝑛2𝜃
= 8m2 𝑎

𝑎−1
, (41) 

we see that the divergence of the factor 
𝑎

𝑎−1
= 1.26 from one is 26%. 
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6.  Conclusion  

The numerical values obtained here for the mass of the Higgs states are in agreement with that 

obtained in [14]. The difference is not large. For instance, for the mass of the 𝜒2state, the 

value 𝑚𝜒2
= 325GeV was obtained there and 𝑚ℎ± =  245 𝐺𝑒𝑉 was obtained for the charged 

particles. These values are slightly lower than our estimates here; this is explained, however, 

by the 𝑈(1)𝐴 anomaly, which increases the right term of the Nambu sum rule and, 

consequently, the mass of the particles of the second Higgs doublet. The novelty is the 

presence in the spectrum of the “electroweak axion” with a mass that practically coincides 

with the mass of the Higgs ground state. Detailed phenomenological analysis will enable us to 

gain insight into the future of this prediction of the model. 
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