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Abstract—Parallel Breadth First Search (BFS) is a famous algorithm in Graph500, a benchmark 

function for evaluating data-intensive applications on supercomputers. For parallel breadth first 

search (BFS) algorithms on large-scale distributed memory systems, the cost of communication 

is usually much higher than the arithmetic cost, which limits the scalability of the algorithm. 

However, the specific communication model of Graph500 brings challenges to computing in 

large-scale graphs. First, we use an adjustment method to delete redundant data in messages. 

Second, a data compression method was used to further reduce comm-unication. Evaluation 

results show that the performance of this method is more efficient than graph500 benchmark. 

1. INTRODUCTION 

Graph algorithm has been widely used in social interaction, email and telephone network communication 

data. Breadth-first search (BFS) is one of the most widely used graph-searching algorithms, which was 

established in 2010 by HPC community, and a new benchmark was proposed to rank supercomputers 

based on their performance on data-intensive applications [1]. Arithmetic and communication are two 

main parts of the algorithm. For distributed platform, communication often costs significantly more than 

arithmetic. For example, on a 256-node cluster, the baseline BFS algorithm in Graph500 spends nearly 

60% time on communication on a Kronecker graph [2] with 64 billion edges (Figure 1). Therefore, 

optimizing the communi-cation part is extremely important in a distributed BFS algorithm. 

 

Figure.1. Proportion of time for distributed BFS implementation in weak scaling experiments 
 

Here are the main contributions of this paper:  

⚫ The basic BFS implementation is analyzed in detail, and several shortcomings of the baseline BFS 

algorithm are summarized. 
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⚫ We introduce a method of cutting the number of communication messages, and elaborates the 

advantages of this method in detail. 

⚫ Compared with the baseline BFS algorithm, 50.3% communication time has been reduced. 

2. PARALLEL BFS ALGORITHM 

In this section, we give an overview of the distribute BFS algorithm, a parallel level-synchronized BFS 

method. 

2.1.  Breadth-First Search Overview 

Given a random “source vertex” s, Breadth-First Search (BFS) systematically explores the graph G to 

discover every vertex that is reachable from s. Let E and V refer to the edge and vertex sets of G, the 

number of edge and vertex are m = |E| and n = |V|. We assume that the graph is unweighted, which means 

each edge e ∈ E is assigned a weight of unity. 

A simple way to distribute the vertices and edges of a graph on a distributed storage system is to let 

each process have its own 𝑛/𝑝 vertices and all the outgoing edges of these vertices [3]. We call this 

division of the graph "one-dimensional division" because it is transformed into the one-dimensional 

decompo-sition of the incidence matrix corresponding to the graph. 

[
 
 
 
 
        𝐴1        

        𝐴2           

         ⋮          

𝐴𝑝 ]
 
 
 
 

 

The distributed BFS with "one-dimensional division" partition proceeds as follows. At level 𝑙 , a 

processor 𝑃𝑖 has a set 𝑓𝑙,𝑖 , which is a set of frontier vertices owned by the processor 𝑃𝑖, The edge lists of 

the vertices in 𝑓𝑙,𝑖 are merged to form a set  of neighboring vertices, some of which will be owned by 𝑃𝑖 

itself, and some vertices will be owned by other processors 𝑃𝑗. For vertices in the latter case, messages 

are sent to 𝑃𝑗 to add these vertices to the next level of frontier set. Each processor receives these sets of 

adjacent vertices and merges them to form𝑓𝑖+1,𝑗, a set of vertices owned by the processor. The processor 

may have marked some vertices in the previous iteration. In this case, the processor will ignore this 

message and all subsequent messages about these vertices. Algorithm 1 gives the pseudo-code for 

baseline distributed BFS on a cluster of multicore or multi-threaded processors. 

Algorithm1: Baseline distributed BFS 

Input: G (V, E), source vertex s.  

Output: 𝜋: means the predecessor vertex on the shortest 

path 

procedure BFS_1D (A, s) 

1:    𝑓(𝑠) ← 𝑠 

2:    for 𝑙 = 1 to ∞ do 

3:        if  𝑓 = ∅ then terminate main loop 

4:        for all processors 𝑃𝑖 in parallel do 

5:        𝑓𝑙 ← 𝐴𝐿𝐿𝐺𝐴𝑇𝐻𝐸𝑅𝑉(𝑓𝑙,𝑖, 𝑃𝑖); 

6:        𝑡𝑙,𝑖 ← 𝐴𝑖⨂𝑓𝑙; 
7:        𝑓𝑙+1,𝑖 ← 𝑡𝑙,𝑖⨀𝜋𝑙; 𝜋𝑙+1 ← 𝜋𝑙 + 𝑡𝑙,𝑖; 

2.2.  Some Shortcomings 

Our algorithm was implemented based on Graph 500. Input datasets are generated use synthetic 

Kronecker graph which follows power law distributions: small diameters and heavy tails for the degree 

distribution which means most of vertices has a small number of neighboring vertices, and the graph is 

sparse. The problem with using bitmap storage nodes is that bits must be reserved for each node. For 
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example, for a graph with 228 vertices, there is only one initial node s in the first layer, so 32MB is still 

needed to store this node, where most of the other nodes’ bits are 0. On the other hand, the cost of 

ALLGATHER collective communication is huge, but broadcast all vertices to all processors is not 

necessary in some cases because some processors need only a small fraction of the frontier information. 

3. OPTIMIZATION OF BFS 

The problem of ALLGATHERV operation for distribute BFS is that it sends all frontier vertices to all 

the processors regardless whether a vertex is useful to them. in Figure.2, there is no direct edge between 

𝑣3  in 𝑃2  and 𝑣4, 𝑣5  in 𝑃3 , so 𝑃3  only needs 𝑣2 from 𝑃2 , which means 𝑃2  does not need to send the 

information of 𝑣3 to 𝑃3, 

 

Figure.2. The value of frontier at the second level 

 

𝑓2 = 𝐴⨂𝑓1 =

[
 
 
 
 
 
0   0   1   1   0   0
0   0   1   1   0   1
1   1   0   0   1   0
1   1   0   0   0   0
0   0   1   0   0   1
0   1   0   0   1   0]

 
 
 
 
 

⨂

[
 
 
 
 
 
1
0
0
0
0
0]
 
 
 
 
 

=

[
 
 
 
 
 
0
0
1
1
0
0]
 
 
 
 
 

 

 For a more detailed explanation, let’s take a look at how the 𝑓 matrix is calculated in this example. 

After the first round of calculation, we get 𝑓2 = [0,0,1,1,0,0]𝑇,which means 𝑣2 and 𝑣3 are in the next 

level. In "one-dimensional division", we partition the matrix A into 𝑃 blocks named 𝐴𝑖(𝑖 ∈ [0, 𝑝)). To 

facilitate the description of the calculation process, partition the matrix 𝐴𝑖 into P parts named 𝐴𝑖,𝑗(𝑗 ∈

[0, 𝑝)). 

while calculating 𝑓3 = [

∑ 𝐴1,𝑗⨂𝑓2,𝑗
3
𝑗=1

∑ 𝐴2,𝑗⨂𝑓2,𝑗
3
𝑗=1

∑ 𝐴3,𝑗⨂𝑓2,𝑗
3
𝑗=1

],  

𝐴3,2⨂𝑓2,2 = [
1  0
0  0

]⨂ [
1
1
] = [

1
0
], because the second column of 𝐴3,2 are all 0, then the second element 

of product will always be 0, which means 𝑣3 is useless for 𝑃3 to calculate 𝑓3,3 in next level. So, we can 

record this information and determine whether to send some vertices to other processor. A data structure 

[4] was define as follow: for each item 𝑣𝑘 in vector 𝑉𝑖,𝑗, 𝑣𝑘 is set to one if column K in 𝐴𝑖,𝑗 contains at 

least one non-zero.  

 𝑉𝑖,𝑗 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑛) 

       𝑤ℎ𝑒𝑟𝑒 𝑣𝑘 = {
  0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
1   ∃𝑎𝑖,𝑘 = 1, 𝑖 ∈ [1,𝑚], 𝑘 ∈ [1, 𝑛]  
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For the example above，𝑉3,2 is initialized to (1,0) at beginning, before traversing, 𝑓2,2 is pruned from 

(1,1) to 𝑓2,2⨀𝑉3,2 = (1,1)𝑇⨀(1,0) = (1,0) , so we need not  send 𝑣3  to 𝑃3 . The pruned matrix is 

established during initialization and used for checking whether a vertex should be transmitted. 

 

Figure.3. The pruned matrix data structure in 𝑃𝑖 
 
Although the modified method reduces the number of vertices sent, because of the representation 

method of the bitmap itself, it needs to maintain all the information bits in the set, so it does not really 

reduce the amount of information sent. Fortunately, through the pruning, we reduced the number of 1 in 

the bitmap, making the bitmap sparser, so that we can reduce the number of communications through 

further compression. 

In the bitmap index, each bitmap often contains a large number of 0. This feature makes it very suitable 

for compression. A good bitmap index compression algorithm needs to achieve two goals: (1) increase 

the rate of bitwise logical operations; (2) reduce query response time. Therefore, the research in the 

industry mainly focuses on "Run-Length Encoding (RLE)" and "Delta-Encoding (DE)" algorithms. The 

main idea of RLE is to compress multiple consecutive identical values into the form of 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑣𝑎𝑙𝑢𝑒, 

for example: 000000 → 6 × (0). 

Concise algorithm, the full name is “Compressed ‘n’ Composable Integer Set”, which is an improved 

version of WAH algorithm [5]. In the WAH method, excluding the highest bit and the second highest bit, 

the remaining 30 bits can represent up to 230 − 1 consecutive all 0 or all 1 sequence, but there are few 

single sequences of this length in actual use scenarios.  So, there is still room for optimization. The 

Concise algorithm is an improved WAH algorithm that efficiently compresses the low n bits in fill words. 

In the experiment, the compression performance of the Concise algorithm is about 50% higher than that 

of WAH.  

In the Concise algorithm, word is divided into two categories: literal words and fill words, and the 

highest bit is set to 1 to represent literal words, that is, a mixed sequence of 0 and 1 follows. 0 means fill 

words, which means there are a large number of consecutive 0 or 1 sequences, all 0 sequences set the 

next high bit to 0, all 1 sequences set the next high bit to 1, and the next 5 bits called "Position Bits", it 

represents the position of a “flipped” bit, which means that 0 and 1 are reversed from which bit in the 

first 31-bitsgroup. As shown below: 

Algorithm2: distributed BFS with optimization  

𝐶𝑆𝐵()and𝑢_𝐶𝑆𝐵()means compress and uncompress operation 

using concise bitmap algorithm. 

procedure BFS_optimized (A, s) 

1:    𝑓(𝑠) ← 𝑠; 

2:    𝑓1 ← 𝐴𝐿𝐿𝐺𝐴𝑇𝐻𝐸𝑅𝑉(𝑓1,𝑖, 𝑃𝑖); 

3:    for 𝑙 = 2 to ∞ do 

4:        if  𝑓 = ∅ then terminate main loop 

5:        for all processors 𝑃𝑖 in parallel do 

6:        𝑡𝑙,𝑖 ← 𝐴𝑖⨂𝑓𝑙; 
7:        𝑓𝑙+1,𝑖 ← 𝑡𝑙,𝑖⨀𝜋𝑙; 𝜋𝑙+1 ← 𝜋𝑙 + 𝑡𝑙,𝑖; 
8:        𝑓𝑙+1,𝑖→𝑗 = 𝑓𝑙+1,𝑖⨀𝑉𝑗,𝑖; 

9:      𝑓𝑙+1,𝑖→𝑗
𝐶 → 𝐶𝑆𝐵(𝑓𝑙+1,𝑖→𝑗); 

10:      𝑓𝑙+1
𝐶 ← 𝐴𝐿𝐿𝐺𝐴𝑇𝐻𝐸𝑅𝑉(𝑓𝑙+1,𝑖

𝐶 , 𝑃𝑖); 

11:      for all processors 𝑃𝑗 in parallel do 

12：   𝑓𝑙+1,𝑗 ← 𝑢_𝐶𝑆𝐵(𝑓𝑙+1,𝑖→𝑗
𝐶 ); 
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Figure.4. An example of concise bitmap algorithm 

 

Taking a word length of 64 bits as an example, Word “a” is a literal word, except for the highest bit, 

the remaining 63 bits can represent the 63 integers [0,62]; Word “b” is a fill word, where the next highest 

bit is 1, which means a sequence of all 1, position bits is 00000, which means that the semantics of this 

fill word is consistent with WAH, and the last 58 bits is 1, which means that it contains two 63-bits groups, 

the first 63-bits group represents the 63 integers [62,124], and the second 63-bits group represents the 

[125,187], so word “b” represents the 126 integers in [62,187]; Word “c” is the fill word, the second 

highest bit is 0, which means all 0 sequence, position bits is 00001, which means 0 → 1 inverted from 

the lowest bit of the first 63-bits group, the last 58 bits are 11101, which means besides the first 63-bits 

group, there are 29 × 63bits groups, the maximum can represent 188(𝑠𝑡𝑎𝑟𝑡) + 63 + 29 × 63 − 1 =
2077, that is, word “c” represents integers in the range [188, 2077]. 

4. ANALYSIS OF ALGORITHM 

Now we will analyze the cost of the optimized algorithm. We study the parallel BFS problem in the 

message passing model of distributed computing. The time it takes to send messages between any two 

processors can be modeled as 𝑇(𝑛) = 𝛼 + 𝑛𝛽, where 𝛼 is the waiting time for each message Time (set-

up time), independent of data size, 𝛽 is the transmission time per byte, and n is the number of bytes 

transmitted [6]. For a given network, 𝛽 is constant. In order to simplify the analysis, we assume that 

𝑛𝛽 ≫ 𝛼, which means the bandwidth cost is much greater than the waiting time cost, because the data 

set of distributed BFS is large, so 𝑇(𝑛) will be determined by the bandwidth cost, that is to say, the 

communication cost is proportional to the message size n proportional. For graph 𝐺(𝑉, 𝐸), 𝐺′𝑠 diameter 

is d, 𝑝 is the number of processors. When each processor needs to broadcast 𝑛/𝑝 size of message to other 

processors, the communication volume of both “Allgather” and “AlltoAll” are O(n). the bandwidth cost 

is 
𝑝−1

𝑝
𝑛𝛽. BFS is a data-intensive algorithm, so we can assume that latency cost is much smaller than 

bandwidth cost, so its communication is bound to 𝑂(|𝑉|). Because algorithm will finish at level d, the 

communication volume of Algorithm1 is 𝑑 × 𝑂(𝑛). 

In Algorithm2, assume 𝐶𝑖 is the compression ratio of 𝐶𝑆𝐵() function at level𝑖, let 𝐶 =
1

𝑑
∑

1

𝐶𝑖

𝑑
𝑖=1  be 

the compression ratio factor; After pruning, a vertex will be sent to at most min (
|𝐸|

|𝑉|
, 𝑝) processors instead 

of 𝑝 in Algorithm1, which make a higher compression ratio. In addition, because of the characteristics of 

Kronecker Graphs, a more obvious compression effect will be obtained in the traversal of the first few 

and the last few levels. 

5. EXPERIMENTAL RESULTS 

The experimental tests in this paper are all done on the computing nodes in the Tianhe-2 supercomputer 

system. Each computing node of Tianhe-2 is equipped with two Intel Ivy Bridge multi-core CPUs - Intel 

Xeon E5-2692 v2, with 12 processors integrated on each CPU and a data width of 64 bits. All cores are 
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tightly interconnected via a high-speed bus. Each processor can expand a virtual processor, so it can 

achieve parallel operation of up to 24 threads. 

Our algorithms are based on Graph500 benchmark and dataset were generated by synthetic kronecker 

generator. The graph size is determined by “Scale” and “Edge factor”, which means the graph owns 

𝑁 = 2𝑠𝑎𝑐𝑙𝑒 vertices and 𝑀 = 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑁 edges, 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 16 as default. To save memory, 

we use a data structure calls “CSR” to store vertex information.  In order to compare the performance of 

Graph 500 implementations across different architectures, A normalized evaluation standard 

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑒𝑑𝑔𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜 

𝑛𝑑(𝑇𝐸𝑃𝑆)is proposed, and 𝑇𝐸𝑃𝑆 =
𝑚

𝑡𝑖𝑚𝑒
. 

The default experiment condition is the parallel environment of 32 processors. Figure 5 shows the 

results of the experiment. We can see that under CSB optimization, the optimized algorithm can achieve 

a performance of 2.91E+9 in the case of 512 cores and scale=29. Compared with the 1.70E+9 of the 

baseline BFS algorithm, it is improved by 71%. In addition, if we adopt the dual optimization of CSB 

and pruning, we can further achieve a better performance of 3.62E+9, which is an increase of 113% 

compared to the baseline BFS. As the number of cores increases, the proportion of communication 

overhead will become larger and larger, this optimization will be more effective. 

 

Figure.5. Performance of different BFS algorithms on scale=29 

 

 

Figure.6. Time breakdown of three kinds of BFS 

 

Figure.6 shows the breakdown of BFS algorithm and its optimized version. We fix the amounts of 

vertices processed by each core to be constant, with the increase in the number of cores, it can be seen 

that the proportion of communication is gradually increasing. For the basic BFS algorithm, it even 

accounts for 71.7% of the total time. In addition, because the graph division will be uneven when the 

number of cores is high, the stall time also has a growing trend. Because the number of vertices processed 

by each core remains the same, the total calculation time is similar. In the case of 512 cores, we can 

reduce the communication volume by 50.3% only through the concise bitmap method. If we combine 
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the concise bitmap and pruning methods, the communication volume can be further reduced to 36.6% of 

the basic BFS algorithm. The algorithm reduces lots of communication with only 10.2%  of extra 

processing time. This cost is really worthwhile, with the scale of the graph increases, the optimization 

effect will be more obvious. 

6. CONCLUSION AND FUTURE WORK 

The baseline algorithm provided in graph500 needs more optimization, especially the problem that 

distributed algorithm communication volume increases significantly with the number of cores, which has 

become the bottleneck of distribute BFS algorithm. Due to the characteristics of the kronecker graph, 

most of vertices have a small number of neighboring vertices, in the first few levels of traversal, the 

number of vertices is small, and there will be a lot of vacancies in bitmap storage, which allows us to 

have more compression space. By adopting the implementation method based on matrix multiplication, 

we can cut off the nodes without specified outgoing edges according to the matrix allocated by each 

processor, thereby reducing the amounts of communication need to be sent. 

The current algorithm can be further improved in the future, such as combining direction optimization 

[7] and 2-D partition [8], this algorithm may achieve better performance. 
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