
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Optimization communication for BFS based on 1D-
partition
To cite this article: Chengyao Liu 2020 J. Phys.: Conf. Ser. 1684 012125

View the article online for updates and enhancements.

You may also like
Error compensation in Brillouin optical
correlation-domain reflectometry by
combining bidirectionally measured
frequency shift distributions
Guangtao Zhu, Kohei Noda, Heeyoung
Lee et al.

-

Proposal of compressed sensing-assisted
Brillouin optical correlation-domain
reflectometry for effective repetition rate
enhancement
Yuguo Yao, Yuangang Lu and Yosuke
Mizuno

-

Brillouin frequency shift measurement with
virtually controlled sensitivity
Yosuke Tanaka and Yuta Ozaki

-

This content was downloaded from IP address 3.138.125.139 on 12/05/2024 at 06:59

https://doi.org/10.1088/1742-6596/1684/1/012125
https://iopscience.iop.org/article/10.35848/1882-0786/abfb40
https://iopscience.iop.org/article/10.35848/1882-0786/abfb40
https://iopscience.iop.org/article/10.35848/1882-0786/abfb40
https://iopscience.iop.org/article/10.35848/1882-0786/abfb40
https://iopscience.iop.org/article/10.35848/1882-0786/acc441
https://iopscience.iop.org/article/10.35848/1882-0786/acc441
https://iopscience.iop.org/article/10.35848/1882-0786/acc441
https://iopscience.iop.org/article/10.35848/1882-0786/acc441
https://iopscience.iop.org/article/10.7567/APEX.10.062504
https://iopscience.iop.org/article/10.7567/APEX.10.062504
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuBWkH8MxB5ShnfVYZNEx51K-QQaUtPPQPdU4YIvSusPBSy8QzdQRY3A4h0_M0GBx0QNqRI6ZogkjXiQ7ZMliLDH5h9A6RmosYrMZaRAfLeKnJeeBIoNTQ0QtP5G1JxNGI7vGAUv9CJlkTW1toZEgUfWnAzevzrqxWXGhXEGx54kSm5sG6H76Jzx4V5A1a9VRSmF57xMLSsrxB_UXraLKinYAfuLpBNiixsOACFdnJMTXYEfP6DTsGw_TdPm9McOIak55I5EslMk3krcgnjquWlKvZ0_7yKUuoZMwb63Mr_ljXyofNo9wkOClqNK6p_L6-FReDWAxwVfmvvo4CW_C2M_G1GTA&sig=Cg0ArKJSzAmNumRGwmhG&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012125

IOP Publishing
doi:10.1088/1742-6596/1684/1/012125

1

Optimization communication for BFS based on 1D-partition

Chengyao Liu

National University of Defense Technology College of Computer, ChangSha, China

410073

Email: liuchengyaoi7@163.com

Abstract—Parallel Breadth First Search (BFS) is a famous algorithm in Graph500, a benchmark

function for evaluating data-intensive applications on supercomputers. For parallel breadth first

search (BFS) algorithms on large-scale distributed memory systems, the cost of communication

is usually much higher than the arithmetic cost, which limits the scalability of the algorithm.

However, the specific communication model of Graph500 brings challenges to computing in

large-scale graphs. First, we use an adjustment method to delete redundant data in messages.

Second, a data compression method was used to further reduce comm-unication. Evaluation

results show that the performance of this method is more efficient than graph500 benchmark.

1. INTRODUCTION

Graph algorithm has been widely used in social interaction, email and telephone network communication

data. Breadth-first search (BFS) is one of the most widely used graph-searching algorithms, which was

established in 2010 by HPC community, and a new benchmark was proposed to rank supercomputers

based on their performance on data-intensive applications [1]. Arithmetic and communication are two

main parts of the algorithm. For distributed platform, communication often costs significantly more than

arithmetic. For example, on a 256-node cluster, the baseline BFS algorithm in Graph500 spends nearly

60% time on communication on a Kronecker graph [2] with 64 billion edges (Figure 1). Therefore,

optimizing the communi-cation part is extremely important in a distributed BFS algorithm.

Figure.1. Proportion of time for distributed BFS implementation in weak scaling experiments

Here are the main contributions of this paper:

⚫ The basic BFS implementation is analyzed in detail, and several shortcomings of the baseline BFS

algorithm are summarized.

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012125

IOP Publishing
doi:10.1088/1742-6596/1684/1/012125

2

⚫ We introduce a method of cutting the number of communication messages, and elaborates the

advantages of this method in detail.

⚫ Compared with the baseline BFS algorithm, 50.3% communication time has been reduced.

2. PARALLEL BFS ALGORITHM

In this section, we give an overview of the distribute BFS algorithm, a parallel level-synchronized BFS

method.

2.1. Breadth-First Search Overview

Given a random “source vertex” s, Breadth-First Search (BFS) systematically explores the graph G to

discover every vertex that is reachable from s. Let E and V refer to the edge and vertex sets of G, the

number of edge and vertex are m = |E| and n = |V|. We assume that the graph is unweighted, which means

each edge e ∈ E is assigned a weight of unity.

A simple way to distribute the vertices and edges of a graph on a distributed storage system is to let

each process have its own 𝑛/𝑝 vertices and all the outgoing edges of these vertices [3]. We call this

division of the graph "one-dimensional division" because it is transformed into the one-dimensional

decompo-sition of the incidence matrix corresponding to the graph.

[

 𝐴1

 𝐴2

 ⋮

𝐴𝑝]

The distributed BFS with "one-dimensional division" partition proceeds as follows. At level 𝑙 , a

processor 𝑃𝑖 has a set 𝑓𝑙,𝑖 , which is a set of frontier vertices owned by the processor 𝑃𝑖, The edge lists of

the vertices in 𝑓𝑙,𝑖 are merged to form a set of neighboring vertices, some of which will be owned by 𝑃𝑖

itself, and some vertices will be owned by other processors 𝑃𝑗. For vertices in the latter case, messages

are sent to 𝑃𝑗 to add these vertices to the next level of frontier set. Each processor receives these sets of

adjacent vertices and merges them to form𝑓𝑖+1,𝑗, a set of vertices owned by the processor. The processor

may have marked some vertices in the previous iteration. In this case, the processor will ignore this

message and all subsequent messages about these vertices. Algorithm 1 gives the pseudo-code for

baseline distributed BFS on a cluster of multicore or multi-threaded processors.

Algorithm1: Baseline distributed BFS

Input: G (V, E), source vertex s.

Output: 𝜋: means the predecessor vertex on the shortest

path

procedure BFS_1D (A, s)

1: 𝑓(𝑠) ← 𝑠

2: for 𝑙 = 1 to ∞ do

3: if 𝑓 = ∅ then terminate main loop

4: for all processors 𝑃𝑖 in parallel do

5: 𝑓𝑙 ← 𝐴𝐿𝐿𝐺𝐴𝑇𝐻𝐸𝑅𝑉(𝑓𝑙,𝑖, 𝑃𝑖);

6: 𝑡𝑙,𝑖 ← 𝐴𝑖⨂𝑓𝑙;
7: 𝑓𝑙+1,𝑖 ← 𝑡𝑙,𝑖⨀𝜋𝑙; 𝜋𝑙+1 ← 𝜋𝑙 + 𝑡𝑙,𝑖;

2.2. Some Shortcomings

Our algorithm was implemented based on Graph 500. Input datasets are generated use synthetic

Kronecker graph which follows power law distributions: small diameters and heavy tails for the degree

distribution which means most of vertices has a small number of neighboring vertices, and the graph is

sparse. The problem with using bitmap storage nodes is that bits must be reserved for each node. For

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012125

IOP Publishing
doi:10.1088/1742-6596/1684/1/012125

3

example, for a graph with 228 vertices, there is only one initial node s in the first layer, so 32MB is still

needed to store this node, where most of the other nodes’ bits are 0. On the other hand, the cost of

ALLGATHER collective communication is huge, but broadcast all vertices to all processors is not

necessary in some cases because some processors need only a small fraction of the frontier information.

3. OPTIMIZATION OF BFS

The problem of ALLGATHERV operation for distribute BFS is that it sends all frontier vertices to all

the processors regardless whether a vertex is useful to them. in Figure.2, there is no direct edge between

𝑣3 in 𝑃2 and 𝑣4, 𝑣5 in 𝑃3 , so 𝑃3 only needs 𝑣2 from 𝑃2 , which means 𝑃2 does not need to send the

information of 𝑣3 to 𝑃3,

Figure.2. The value of frontier at the second level

𝑓2 = 𝐴⨂𝑓1 =

[

0 0 1 1 0 0
0 0 1 1 0 1
1 1 0 0 1 0
1 1 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0]

⨂

[

1
0
0
0
0
0]

=

[

0
0
1
1
0
0]

 For a more detailed explanation, let’s take a look at how the 𝑓 matrix is calculated in this example.

After the first round of calculation, we get 𝑓2 = [0,0,1,1,0,0]𝑇,which means 𝑣2 and 𝑣3 are in the next

level. In "one-dimensional division", we partition the matrix A into 𝑃 blocks named 𝐴𝑖(𝑖 ∈ [0, 𝑝)). To

facilitate the description of the calculation process, partition the matrix 𝐴𝑖 into P parts named 𝐴𝑖,𝑗(𝑗 ∈

[0, 𝑝)).

while calculating 𝑓3 = [

∑ 𝐴1,𝑗⨂𝑓2,𝑗
3
𝑗=1

∑ 𝐴2,𝑗⨂𝑓2,𝑗
3
𝑗=1

∑ 𝐴3,𝑗⨂𝑓2,𝑗
3
𝑗=1

],

𝐴3,2⨂𝑓2,2 = [
1 0
0 0

]⨂ [
1
1
] = [

1
0
], because the second column of 𝐴3,2 are all 0, then the second element

of product will always be 0, which means 𝑣3 is useless for 𝑃3 to calculate 𝑓3,3 in next level. So, we can

record this information and determine whether to send some vertices to other processor. A data structure

[4] was define as follow: for each item 𝑣𝑘 in vector 𝑉𝑖,𝑗, 𝑣𝑘 is set to one if column K in 𝐴𝑖,𝑗 contains at

least one non-zero.

 𝑉𝑖,𝑗 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑛)

 𝑤ℎ𝑒𝑟𝑒 𝑣𝑘 = {
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1 ∃𝑎𝑖,𝑘 = 1, 𝑖 ∈ [1,𝑚], 𝑘 ∈ [1, 𝑛]

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012125

IOP Publishing
doi:10.1088/1742-6596/1684/1/012125

4

For the example above，𝑉3,2 is initialized to (1,0) at beginning, before traversing, 𝑓2,2 is pruned from

(1,1) to 𝑓2,2⨀𝑉3,2 = (1,1)𝑇⨀(1,0) = (1,0) , so we need not send 𝑣3 to 𝑃3 . The pruned matrix is

established during initialization and used for checking whether a vertex should be transmitted.

Figure.3. The pruned matrix data structure in 𝑃𝑖

Although the modified method reduces the number of vertices sent, because of the representation

method of the bitmap itself, it needs to maintain all the information bits in the set, so it does not really

reduce the amount of information sent. Fortunately, through the pruning, we reduced the number of 1 in

the bitmap, making the bitmap sparser, so that we can reduce the number of communications through

further compression.

In the bitmap index, each bitmap often contains a large number of 0. This feature makes it very suitable

for compression. A good bitmap index compression algorithm needs to achieve two goals: (1) increase

the rate of bitwise logical operations; (2) reduce query response time. Therefore, the research in the

industry mainly focuses on "Run-Length Encoding (RLE)" and "Delta-Encoding (DE)" algorithms. The

main idea of RLE is to compress multiple consecutive identical values into the form of 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑣𝑎𝑙𝑢𝑒,

for example: 000000 → 6 × (0).

Concise algorithm, the full name is “Compressed ‘n’ Composable Integer Set”, which is an improved

version of WAH algorithm [5]. In the WAH method, excluding the highest bit and the second highest bit,

the remaining 30 bits can represent up to 230 − 1 consecutive all 0 or all 1 sequence, but there are few

single sequences of this length in actual use scenarios. So, there is still room for optimization. The

Concise algorithm is an improved WAH algorithm that efficiently compresses the low n bits in fill words.

In the experiment, the compression performance of the Concise algorithm is about 50% higher than that

of WAH.

In the Concise algorithm, word is divided into two categories: literal words and fill words, and the

highest bit is set to 1 to represent literal words, that is, a mixed sequence of 0 and 1 follows. 0 means fill

words, which means there are a large number of consecutive 0 or 1 sequences, all 0 sequences set the

next high bit to 0, all 1 sequences set the next high bit to 1, and the next 5 bits called "Position Bits", it

represents the position of a “flipped” bit, which means that 0 and 1 are reversed from which bit in the

first 31-bitsgroup. As shown below:

Algorithm2: distributed BFS with optimization

𝐶𝑆𝐵()and𝑢_𝐶𝑆𝐵()means compress and uncompress operation

using concise bitmap algorithm.

procedure BFS_optimized (A, s)

1: 𝑓(𝑠) ← 𝑠;

2: 𝑓1 ← 𝐴𝐿𝐿𝐺𝐴𝑇𝐻𝐸𝑅𝑉(𝑓1,𝑖, 𝑃𝑖);

3: for 𝑙 = 2 to ∞ do

4: if 𝑓 = ∅ then terminate main loop

5: for all processors 𝑃𝑖 in parallel do

6: 𝑡𝑙,𝑖 ← 𝐴𝑖⨂𝑓𝑙;
7: 𝑓𝑙+1,𝑖 ← 𝑡𝑙,𝑖⨀𝜋𝑙; 𝜋𝑙+1 ← 𝜋𝑙 + 𝑡𝑙,𝑖;
8: 𝑓𝑙+1,𝑖→𝑗 = 𝑓𝑙+1,𝑖⨀𝑉𝑗,𝑖;

9: 𝑓𝑙+1,𝑖→𝑗
𝐶 → 𝐶𝑆𝐵(𝑓𝑙+1,𝑖→𝑗);

10: 𝑓𝑙+1
𝐶 ← 𝐴𝐿𝐿𝐺𝐴𝑇𝐻𝐸𝑅𝑉(𝑓𝑙+1,𝑖

𝐶 , 𝑃𝑖);

11: for all processors 𝑃𝑗 in parallel do

12： 𝑓𝑙+1,𝑗 ← 𝑢_𝐶𝑆𝐵(𝑓𝑙+1,𝑖→𝑗
𝐶);

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012125

IOP Publishing
doi:10.1088/1742-6596/1684/1/012125

5

Figure.4. An example of concise bitmap algorithm

Taking a word length of 64 bits as an example, Word “a” is a literal word, except for the highest bit,

the remaining 63 bits can represent the 63 integers [0,62]; Word “b” is a fill word, where the next highest

bit is 1, which means a sequence of all 1, position bits is 00000, which means that the semantics of this

fill word is consistent with WAH, and the last 58 bits is 1, which means that it contains two 63-bits groups,

the first 63-bits group represents the 63 integers [62,124], and the second 63-bits group represents the

[125,187], so word “b” represents the 126 integers in [62,187]; Word “c” is the fill word, the second

highest bit is 0, which means all 0 sequence, position bits is 00001, which means 0 → 1 inverted from

the lowest bit of the first 63-bits group, the last 58 bits are 11101, which means besides the first 63-bits

group, there are 29 × 63bits groups, the maximum can represent 188(𝑠𝑡𝑎𝑟𝑡) + 63 + 29 × 63 − 1 =
2077, that is, word “c” represents integers in the range [188, 2077].

4. ANALYSIS OF ALGORITHM

Now we will analyze the cost of the optimized algorithm. We study the parallel BFS problem in the

message passing model of distributed computing. The time it takes to send messages between any two

processors can be modeled as 𝑇(𝑛) = 𝛼 + 𝑛𝛽, where 𝛼 is the waiting time for each message Time (set-

up time), independent of data size, 𝛽 is the transmission time per byte, and n is the number of bytes

transmitted [6]. For a given network, 𝛽 is constant. In order to simplify the analysis, we assume that

𝑛𝛽 ≫ 𝛼, which means the bandwidth cost is much greater than the waiting time cost, because the data

set of distributed BFS is large, so 𝑇(𝑛) will be determined by the bandwidth cost, that is to say, the

communication cost is proportional to the message size n proportional. For graph 𝐺(𝑉, 𝐸), 𝐺′𝑠 diameter

is d, 𝑝 is the number of processors. When each processor needs to broadcast 𝑛/𝑝 size of message to other

processors, the communication volume of both “Allgather” and “AlltoAll” are O(n). the bandwidth cost

is
𝑝−1

𝑝
𝑛𝛽. BFS is a data-intensive algorithm, so we can assume that latency cost is much smaller than

bandwidth cost, so its communication is bound to 𝑂(|𝑉|). Because algorithm will finish at level d, the

communication volume of Algorithm1 is 𝑑 × 𝑂(𝑛).

In Algorithm2, assume 𝐶𝑖 is the compression ratio of 𝐶𝑆𝐵() function at level𝑖, let 𝐶 =
1

𝑑
∑

1

𝐶𝑖

𝑑
𝑖=1 be

the compression ratio factor; After pruning, a vertex will be sent to at most min (
|𝐸|

|𝑉|
, 𝑝) processors instead

of 𝑝 in Algorithm1, which make a higher compression ratio. In addition, because of the characteristics of

Kronecker Graphs, a more obvious compression effect will be obtained in the traversal of the first few

and the last few levels.

5. EXPERIMENTAL RESULTS

The experimental tests in this paper are all done on the computing nodes in the Tianhe-2 supercomputer

system. Each computing node of Tianhe-2 is equipped with two Intel Ivy Bridge multi-core CPUs - Intel

Xeon E5-2692 v2, with 12 processors integrated on each CPU and a data width of 64 bits. All cores are

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012125

IOP Publishing
doi:10.1088/1742-6596/1684/1/012125

6

tightly interconnected via a high-speed bus. Each processor can expand a virtual processor, so it can

achieve parallel operation of up to 24 threads.

Our algorithms are based on Graph500 benchmark and dataset were generated by synthetic kronecker

generator. The graph size is determined by “Scale” and “Edge factor”, which means the graph owns

𝑁 = 2𝑠𝑎𝑐𝑙𝑒 vertices and 𝑀 = 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑁 edges, 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 16 as default. To save memory,

we use a data structure calls “CSR” to store vertex information. In order to compare the performance of

Graph 500 implementations across different architectures, A normalized evaluation standard

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑒𝑑𝑔𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜

𝑛𝑑(𝑇𝐸𝑃𝑆)is proposed, and 𝑇𝐸𝑃𝑆 =
𝑚

𝑡𝑖𝑚𝑒
.

The default experiment condition is the parallel environment of 32 processors. Figure 5 shows the

results of the experiment. We can see that under CSB optimization, the optimized algorithm can achieve

a performance of 2.91E+9 in the case of 512 cores and scale=29. Compared with the 1.70E+9 of the

baseline BFS algorithm, it is improved by 71%. In addition, if we adopt the dual optimization of CSB

and pruning, we can further achieve a better performance of 3.62E+9, which is an increase of 113%

compared to the baseline BFS. As the number of cores increases, the proportion of communication

overhead will become larger and larger, this optimization will be more effective.

Figure.5. Performance of different BFS algorithms on scale=29

Figure.6. Time breakdown of three kinds of BFS

Figure.6 shows the breakdown of BFS algorithm and its optimized version. We fix the amounts of

vertices processed by each core to be constant, with the increase in the number of cores, it can be seen

that the proportion of communication is gradually increasing. For the basic BFS algorithm, it even

accounts for 71.7% of the total time. In addition, because the graph division will be uneven when the

number of cores is high, the stall time also has a growing trend. Because the number of vertices processed

by each core remains the same, the total calculation time is similar. In the case of 512 cores, we can

reduce the communication volume by 50.3% only through the concise bitmap method. If we combine

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012125

IOP Publishing
doi:10.1088/1742-6596/1684/1/012125

7

the concise bitmap and pruning methods, the communication volume can be further reduced to 36.6% of

the basic BFS algorithm. The algorithm reduces lots of communication with only 10.2% of extra

processing time. This cost is really worthwhile, with the scale of the graph increases, the optimization

effect will be more obvious.

6. CONCLUSION AND FUTURE WORK

The baseline algorithm provided in graph500 needs more optimization, especially the problem that

distributed algorithm communication volume increases significantly with the number of cores, which has

become the bottleneck of distribute BFS algorithm. Due to the characteristics of the kronecker graph,

most of vertices have a small number of neighboring vertices, in the first few levels of traversal, the

number of vertices is small, and there will be a lot of vacancies in bitmap storage, which allows us to

have more compression space. By adopting the implementation method based on matrix multiplication,

we can cut off the nodes without specified outgoing edges according to the matrix allocated by each

processor, thereby reducing the amounts of communication need to be sent.

The current algorithm can be further improved in the future, such as combining direction optimization

[7] and 2-D partition [8], this algorithm may achieve better performance.

REFERENCES

[1] Jose, J., Potluri, S., Tomko, K., Panda, D.K.: Designing scalable graph500 benchmark with hybrid

MPI+ OpenSHMEM programming models (2013).

[2] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, "Realistic, mathematically tractable

graph generation and evolution, using kronecker multiplication," in Conf. on Principles and

Practice of Knowledge Discovery in Databases, 2005.

[3] IAndy Yoo, Edmond Chow, Keith Henderson,William McLendon, Bruce Hendrickson, Umit

Catalyurek, “A Scalable Distributed Parallel Breadth-First Search Algorithm on BlueGene/L”

Supersomputing 2005 (SC05), July 20, 2005.

[4] Lu, H., Tan, G., Chen, M., & Sun, N. (2014). Reducing Communication in Parallel Breadth-First

Search on Distributed Memory Systems. 2014 IEEE 17th International Conference on

Computational Science and Engineering.

[5] Alessandro Colantonio, Roberto Di Pietroa,"Concise: Compressed ’n’ Composable Integer Set",

Information Processing Letters 110 (2010) pp.644–650.

[6] V. Kumar, Introduction to Parallel Computing, 2nd ed. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2002.

[7] S. Beamer, K. Asanovi, and D. A. Patterson, “Searching for a parent instead of fighting over children:

A fast breadth-first search implementation for graph500,” EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2011-117, Nov 2011.

[8] A. Buluc ̧ and K. Madduri, “Parallel breadth-first search on distributed memory systems,” in

Proceedings of 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011.

