
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Research and design of activation function
hardware implementation methods
To cite this article: Chen Zhengbo et al 2020 J. Phys.: Conf. Ser. 1684 012111

View the article online for updates and enhancements.

You may also like
Implementation of an efficient magnetic
tunnel junction-based stochastic neural
network with application to iris data
classification
Arshid Nisar, Farooq A Khanday and
Brajesh Kumar Kaushik

-

Rolling bearing fault diagnosis by Markov
transition field and multi-dimension
convolutional neural network
Chunli Lei, Linlin Xue, Mengxuan Jiao et
al.

-

Implementation of Fixed-point Neuron
Models with Threshold, Ramp and
Sigmoid Activation Functions
Lei Zhang

-

This content was downloaded from IP address 18.117.145.173 on 13/05/2024 at 16:40

https://doi.org/10.1088/1742-6596/1684/1/012111
https://iopscience.iop.org/article/10.1088/1361-6528/abadc4
https://iopscience.iop.org/article/10.1088/1361-6528/abadc4
https://iopscience.iop.org/article/10.1088/1361-6528/abadc4
https://iopscience.iop.org/article/10.1088/1361-6528/abadc4
https://iopscience.iop.org/article/10.1088/1361-6501/ac87c4
https://iopscience.iop.org/article/10.1088/1361-6501/ac87c4
https://iopscience.iop.org/article/10.1088/1361-6501/ac87c4
https://iopscience.iop.org/article/10.1088/1757-899X/224/1/012054
https://iopscience.iop.org/article/10.1088/1757-899X/224/1/012054
https://iopscience.iop.org/article/10.1088/1757-899X/224/1/012054
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuIsw7nek9XWjxkUEfOZgwLiFJPI1VsAer-wLt5CTjik8kr-CvRbnML7koduKSwZSZcd4ZudvZjr8DPWLhSzh7UBzL1sdQSfR1w14ctj6AeZJCMctA6PMTY90l1GeusGNkce9WPrtpTCX_UMUYuqB3pHDNWQXFZLuEgBTAJDqcMS3y5CgnnQviOBB0Rxrb6nEiKiLPDlXYXDG4I_SkF31Q3PREMrVTr4_F0386vGj3iUQNLGRBeUMCN3-nOg_iSE489hzDYutJZClOQRkiVpHUioOtun3Gx0_SXCR6-WVS_NfKlPrDRd-_Q8vDzPwyKvsTJPFTLh5GdhMN-d2qCcj4wfXW0Nw&sig=Cg0ArKJSzAYlCiUdnzLU&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012111

IOP Publishing
doi:10.1088/1742-6596/1684/1/012111

1

Research and design of activation function hardware
implementation methods

Chen Zhengbo1,a, Tong Lei1, Chen Zuoning2
1Information Engineering University, Zhengzhou, China
2Chinese Academy of Engineering, Beijing, China
achenzb12@mails.tsinghua.edu.cn
*chenzb1996@163.com

Abstract—Activation function is an important part of neural network. Many artificial
intelligence accelerators specially design hardware component supporting for activation function.
In this article, we analyze normal activation functions, study kinds of activation function
hardware implementation methods, and propose a parallel look-up table based piecewise linear
fitting method. In many-core AI processor, we determine the table precision by memory size,
and propose the basic algorithm and detailed structural design scheme. After the design is
completed, we verify its correctness and evaluate its performance. The result shows that
proposed method meets the need of correctness, and can finish the parallel computation of
sixteen activation function fitting results within thirteen cycles. It greatly improves the efficiency
of activation function hardware design.

1. INTRODUCTION
Recently, Artificial Intelligence technology develops rapidly, Deep Neural Network is going to be state-
of-the-art in many applications such as computer vision [1], nature language processing [2]. Nowadays
main stream neural network includes Convolutional Neural Network [1], Recurrent Neural Network [3],
Long Short Term Memory [4], Generative Adversarial Nets [5]. As a nonlinear function, activation
function plays a very important role in lots of neural networks. Activation function which commonly
used in neural network includes Sigmoid, Tanh, Softmax, Relu. No matter training or inference, we have
to use activation function in forward and backward propagation. Activation function is of great
significance to the convergence of neural networks.

Activation function is nonlinear, making it hard to compute using the floating point multiply-add
component. We need an efficient hardware implementation method.

Currently mainstream artificial intelligence chips specially design hardware component supporting
for activation function, such as TPU [6], DianNao [7]. The overall architecture of DianNao is shown in
Figure 1. In DianNao, the layers in CNN are divided into three levels. The first level is Multiply. The
second level is Add/Max. The third level is Transfer Function (i.e., nonlinear function like Sigmoid).
Convolutional layers and fully connected layers are composed of three levels, and pooling layers are
composed of the first two levels. In the Transfer Function level, DianNao uses look-up table based linear
fitting method to achieve hardware supporting for activation function.

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012111

IOP Publishing
doi:10.1088/1742-6596/1684/1/012111

2

Figure 1. Overall architecture of DianNao.

Many-core AI chip is composed of many-core processor architecture, including Management

Processing Element and Computing Processing Element. Computing Processing Element contains
general-purpose computing component and AI acceleration core. Convolution is finished in AI
acceleration core, and the results are sent to general-purpose computing component to finish activation
function computation. The activation function component is in general-purpose computing component,
realized by parallel look-up table based piecewise linear fitting method.

In this article, we analyze normal activation functions, study kinds of activation function hardware
implementation methods. In many-core AI processor, we propose a parallel look-up table based piecewise
linear fitting method, design the detailed architecture, and do some experimental verification. The result
shows this architecture can accomplish activation function.

2. ANALYSIS OF ACTIVATION FUNCTION
Normal activation function includes Sigmoid, Tanh, Relu [8], Softmax, etc. Sigmoid function expression
is in (1). Tanh function expression is in (2). Relu function sets the negative value to 0, and expression is
in (3). Softmax function expression is in (4).

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = (1)

 𝑇𝑎𝑛ℎ(𝑥) = (2)

 𝑅𝑒𝑙𝑢(𝑥) = 𝑥, 𝑖𝑓 𝑥 00, 𝑖𝑓 𝑥 0 (3)

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) = ∑ (4)

The hardware implementation of Relu function is simple, and Softmax function is composed of
exponential function and logarithmic function. So, in this article, we only consider Sigmoid, Tanh, Log(x)
and Exp(x).

In the process of neural network training, we have to use activation function and derivation of
activation function in forward and backward propagation. During the forward propagation, Sigmoid
function is Sigmoid(𝑥) = σ(𝑥); During the backward propagation, derivation of Sigmoid function is σ′(x) = σ(x)(1 − σ(x)) . So we can use function result and additional floating point multiply-add
operation get the final result. Similarly, the forward propagation of Tanh function is Tanh(x) =

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012111

IOP Publishing
doi:10.1088/1742-6596/1684/1/012111

3

2σ(2x) − 1, and the backward propagation of Tanh function is Tanh′(x) = 4σ′(2x). We can also use
sigmoid function result and additional floating point multiply-add operation get the final result.

The hardware implementation of activation function includes look-up table method, Taylor expansion
method, piecewise linear function method [9], etc.

Look-up table method is most intuitive and universal. Within the allowable range of error, it stores
sampling value of nonlinear function. For any input number, this method directly accesses corresponding
result. Look-up table method match input and output, getting the result in one memory access, but it costs
too much memory.

Taylor expansion method uses Taylor expansion formula to simulate nonlinear function. Normal
activation function is infinitely derivative, and Taylor expansion formula can approach the real value.
But the computing units are finite, and high order operations are too complex. Taylor expansion method
is rarely used. Its expression is in (5). 𝑓(𝑥) = 𝑓(𝑥) + 𝑓()(𝑥)(𝑥 − 𝑥) + ⋯ + ()()! (𝑥 − 𝑥) (5)

Piecewise linear fitting method divides the nonlinear function, and uses multiple sections of linear
function to fit the nonlinear function within the allowable range of error. The simplest piecewise linear
fitting method is equal division. It divides the independent variable interval equally, and stores the slope
and bias value per section. We access the corresponding slope and bias value by independent variable,
and use floating point operation to get the fitting result. Its expression is in (6).

 𝑦 =
⎩⎪⎨
⎪⎧ 𝑎 𝑥 + 𝑏 , 𝑥 ∈ [𝑥 , 𝑥 + ∆𝑥)𝑎 𝑥 + 𝑏 , 𝑥 ∈ [𝑥 + ∆𝑥, 𝑥 + 2∆𝑥)…𝑎 𝑥 + 𝑏 , 𝑥 ∈ [𝑥 + 𝑘∆𝑥, 𝑥 + (𝑘 + 1)∆𝑥)𝑎 𝑥 + 𝑏 , 𝑥 ∈ [𝑥 + 𝑘∆𝑥, 𝑥 + (𝑘 + 2)∆𝑥)𝑎 𝑥 + 𝑏 , 𝑥 ∈ [𝑥 + (𝑛 − 1)∆𝑥, 𝑥]

 (6)

3. MANY-CORE AI CHIP
Many-core AI chip is composed of many-core processor architecture, including Management Processing
Element and Computing Processing Element. Computing Processing Element contains general-purpose
computing component, AI acceleration core and Local Data Memory. The architecture of Computing
Processing Element is shown in Figure 2. Proposed hardware implementation of activation function is
completed in general-purpose computing component.

Figure 2. Architecture of Computing Processing Element

The memory of CPE consists of 256KB Local Data Memory. According to analysis of error and LDM

size, we choose 64 as number of sections. This component can parallel finish 16 look-up table operations,
and all slope and bias values store as single precision 32-bit floating point number. The overall memory
is 64*32bit*2*16=64Kbit=8Kbyte, only costing 1/32 of LDM size.

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012111

IOP Publishing
doi:10.1088/1742-6596/1684/1/012111

4

4. DESIGN OF ACTIVATION FUNCTION ARCHITECTURE

4.1. Basic algorithm and overall architecture
Nonlinear function such as Sigmoid and Tanh is hard to directly solve, so piecewise linear function fitting
method can reduce implementation cost. Linear fitting coefficients store in the table, and we can transfer
the input single precision 32-bit number to get the signed offset address in the table.

The basic algorithm of look-up table based piecewise linear fitting method is shown as follow. Firstly,
according to the exponent of input data, we align the 24-bit mantissa. Then we cut out the result based on
instruction flag, combining the sign of input number, and get 8-bit signed number. Finally we expand 8-
bit number with 6 zeros to 14-bit result, as the final table offset address.

Now we can determine the input and output of activation function architecture. Input 32-bit single
precision number i_src[31:0], 6-bit instruction flag i_type[5:0](i_type[5:3] represent integer intercept
bits, and i_type[2:0] represent fraction intercept bits). Output 14-bit signed offset address o_disp[13:0],
instruction exception flag o_type_excep and input data exceeding linear section exception flag
o_line_overflow.

The architecture of parallel look-up table based activation function implementation is shown in Figure
3, including Alignment Module, Post-process Module and Exception Detection Module.

Figure 3. Architecture of parallel look-up table based activation function

4.2. Alignment Module
Alignment Module aligns the mantissa part of input data according to the exponent part of input data,
getting 14-bit immediate result (7-bit integer and 7-bit fraction). The logic diagram of Alignment Module
is shown in Figure 4.

Firstly, we transpose mantissa using the sign of input data, getting 24-bit number which need to be
aligned. When the sign is zero, 24-bit number combines 1-bit 1 and 23-bit mantissa; When the sign is
one, 24-bit number combines 1-bit 0 and 23-bit inverted mantissa.

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012111

IOP Publishing
doi:10.1088/1742-6596/1684/1/012111

5

i_src[31:0]

immd_result[13:0]

{1'b1,i_src[22:0]}i_src[26:23]

>>(7) <<(8)

i_src[30:27]

i_src[31]

3:1MUX

Adder

4'h1

Zs[3:0]

Invert
~i_src[26:23]

10000111

14'b0

{1'b0,~i_src[22:0]}

2:1MUX
0 1

Zs[3:0]

Figure 4. Alignment Module

Then, we align 24-bit number using the exponent of input data. After alignment, data need to be

truncated, so the maximum align number is related to truncation. According to 7-bit integer, 7-bit fraction
and position of decimal point, the maximum left align number is 8, and the maximum right align number
is 7.

The maximum align number is 8, so we invert i_src[26:23] or plus i_src[26:23] and one, getting the
right align number and left align number. The corresponding relationship of align number and exponent
is shown in Table I. After alignment, we select correct 14-bit immediate result using i_src[30:27].
Meanwhile, left align number zs[3:0] is outputted to Exception Detection Module.

TABLE I. ALIGN NUMBER AND EXPONENT

Real Exp Biased Exp Binary Biased Exp Alignment Align Number

-127 0 00000000 7-bit right 111
… … … … …
-8 119 01110111 7-bit right 111
-7 120 01111000 7-bit right 111
… … … … …
-2 125 01111101 2-bit right 10
-1 126 01111110 1-bit right 1
0 127 01111111 none 0
1 128 10000000 1-bit left 1
2 129 10000001 2-bit left 10
… … … … …
8 135 10000111 8-bit left 1000
9 136 10001000 8-bit left 1000
… … … … …

128 255 11111111 8-bit left 1000

4.3. Post-process Module
Post-process Module calculates 14-bit table biased address using 14-bit immediate result and instruction
flag. The logic diagram of Post-process Module is shown in Figure 5.

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012111

IOP Publishing
doi:10.1088/1742-6596/1684/1/012111

6

Figure 5. Post-process Module

We split instruction flag, high three bits i_type[5:3] representing integer, low three bits i_type[2:0]

representing fraction. Then we decode split instruction flag using decoder and get 14-bit data. 14-bit data
“AND” with 14-bit immediate result, and align using fraction flag, truncating 7-bit data, combining
inverted input data sign ~i_src[31] and 6 zeros, getting 14-bit table biased address. Normal look-up table
operations output fixed value.

4.4. Exception Detection Module
Exception Detection Module makes exception judgment about instruction exception flag and input data
exceeding linear section exception flag, these two exception are only effective during expanded parallel
look-up table operations. The logic diagram of Exception Detection Module is shown in Figure 6.

Figure 6. Exception Detection Module

Instruction exception flag. High three bits of instruction flag represent integer and low three bits of

instruction flag represent fraction. If these two number are both zero or sum of them is less than or equal
to 8, instruction has no exception. Or else instruction exception flag is 1.

Input data exceeding linear section exception flag. Input data exceeding linear section means input
single precision data exceeds hardware representable largest linear section range, then input data
exceeding linear section exception flag is 1. There are some conditions. Condition 1 is left alignment.

AINIT 2020
Journal of Physics: Conference Series 1684 (2020) 012111

IOP Publishing
doi:10.1088/1742-6596/1684/1/012111

7

Condition 2 is left align number is more than 8. Condition 3 is left align number is more than largest
representable bits. Input data exceeding linear section exception flag equals Condition 1 & (Condition 2
| Condition 3).

4.5. Experimental Verification
We implement parallel look-up table based activation function hardware in many-core AI processor, and
verify its correctness and evaluate its performance.

After finishing the design of architecture and the code, we verify the correctness of this component
using PSL language, including module level test, function points test and random number test. The results
show that this component meets the need of correctness.

Parallel look-up table based piecewise linear fitting method implements activation function. Look-up
table instruction takes 3 cycles, 1cycle for address calculation, 1cycle for memory access, 1 cycle for
table look-up. Combing 6 cycles for two look-up table instructions and 7 cycles for floating point
multiply-add instruction, 16 activation function fitting results are finished within 13 cycles totally.
Comparing to 3 cycles for direct look-up table method, our method is far more efficient.

5. SUMMARY
In this article, we propose a parallel look-up table piecewise based linear fitting method for activation
function hardware implementation, and use it in many-core AI processor.

We analyze normal activation functions and kinds of activation function hardware implementation
methods, and propose our method. Then we determine the table precision by many-core AI processor
memory size, and propose the basic algorithm and detailed structural design scheme. Finally, we do some
experimental verification.

The results show that proposed method meets the need of correctness, and can finish the parallel
computation of 16 activation function fitting results within 13 cycles, greatly improving the efficiency of
activation function hardware design.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, G. E. Hinton G. “ImageNet classification with deep convolutional

neural networks,” International Conference on Neural Information Processing Systems. 2012,
pp. 1097-1105.

[2] L. Dong, F. Wei, M. Zhou, and K. Xu. “Adaptive multi compositionality for recursive neural models
with applications to sentiment analysis,” AAAI Conference on Artificial Intelligence. Québec,
Canada: AAAI Press, 2014: 1537-1543.

[3] K. Cho, B. V. Merrienboer, C. Gulcehre, et al. “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation,” Computer Science, 2014, pp. 1724-
1734.

[4] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber. "LSTM: A Search
Space Odyssey," IEEE Transactions on Neural Networks & Learning Systems, 2016, pp.
2222-2239.

[5] I. J. Goodfellow, J. P. Abadie, M. Mirza, et al. “Generative adversarial nets,” Cambridge: MIT Press,
2014, pp. 2672-2680.

[6] N. P. Jouppi, C. Young, N. Patil, et al. “In-Datacenter Performance Analysis of a Tensor Processing
Unit,” Paper presented at the meeting of the ISCA, 2017.

[7] T. Chen, Z. Du, N. Sun, et al. “DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning,” Acm Sigplan Notices, 2014, pp. 269-284.

[8] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” Paper
presented at the meeting of the ICML, 2010.

[9] S. Ngah, R. A. Bakar, A. Embong, and S. Razali. “Two-steps implementation of sigmoid function
for artificial neural network in field programmable gate array,” ARPN Journal of Engineering
and Applied Sciences, 2016, pp. 4882-4888.

