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Abstract. Accurate and effective identification of pavement cracks can provide a reference for 
pavement performance evaluation and prediction.Inspiredby recent outstanding performance of 
convolutional sparse coding theory in various research fields, we envision whether 
convolutional sparse coding can be beneficial for crack detection in complex environments. 
Therefore, based on the multi-layer convolutional sparse coding (ML-CSC) model, this paper 
combines multi-layer iterative soft threshold algorithm (ML-ISTA) and convolutional neural 
network (CNN) into recurrent neural networks (RNN) to identify crack images across the 
simulated experiments. And in different noise environments, different training cycles and 
different epochs, the ML-ISTA is compared with traditional CNN and the layered basis pursuit 
(LBP), which is another popular algorithm for ML-CSC.Experimental results showed that 
under the different training conditions with the same parameter setting, the stability and 
accuracy of the ML-ISTA is better than CNN and LBP. The ML-ISTA can achieve crack 
identification accuracy of 99.36% efficiently, which demonstrates the effectiveness of 
convolutional sparse coding in crack detection. 

1. Introduction 
With the continuous development and improvement of China's infrastructure construction, engineering 
construction has achieved remarkable results in the specific implementation of roads and bridges. 
However, in the actual operation of project construction, due to the impact of aging building materials, 
natural disasters and human-made destruction, these engineering structures show different degrees of 
damage, and the cracks on the surface of the concrete structure are the most prominent aspects. These 
cracks bring substantial economic losses and accident risks. Therefore, it is of considerable 
significance to classify the pavement cracks accurately and efficiently. 

Crack detection task can be evaluated as a classification problem of crack presence in essence. Two 
types of methodological approaches are observed in the course of autonomous visual crack detection. 
The first type of study is based on the sequential operation of feature extraction and classification 
utilizing machine learning classifiers [1-3]. The second type of methodological approach is observed 
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in studies utilizing deep learning methods (e.g., convolutional neural networks) in which the feature 
extraction stage is conducted within the black-box algorithm. Zhang et al. use a CNN with six 
convolution layers to conduct binary crack detection task on roads, in which CNN method shows 
excellent performance [4]. Similarly, Wang et al. utilize CNN with five convolutional layers for 
classifying the asphalt pavement cracks based on the 3D data input with depth with 1mm resolution 
[5]. In this study, the RNN model generated by the ML-ISTA algorithm of the convolutional sparse 
coding strategy [6-8] is extended to the road crack images classification task, where its performance 
will be fully validated in the next section. 

2. ML-CSC and ML-ISTA 
Given a set of convolutional dictionaries  𝐃 of appropriate dimensions, a signal  𝐱(𝛾 ) ∈ ℝ   
admits a representation in terms of multi-layer convolutional sparse coding (ML-CSC) model [6-8], i.e. 𝐱(𝛾 ) ∈ ℳ𝝀, if 

 

𝐱 𝐃 𝛾 , ‖𝛾 ‖ , 𝜆  ,𝛾 𝐃 𝛾 , ‖𝛾 ‖ , 𝜆  ,⋮𝛾 𝐃 𝛾 , ‖𝛾 ‖ , 𝜆 . (1) 

In this paper, the multi-layer iterative soft threshold algorithm (ML-ISTA) was applied to solve the 
ML-CSC problem [9], where the structure of recurrent neural network generated by combining ML-
ISTA and CNN is shown in Figure 1. More details about ML-ISTA can be found in reference [9]. 

 
Figure 1. The architecture of recurrent neural network based on ML-CSC with CNN (example for 

images with 227x227 pixels). Each blue box corresponds to a multi-channel feature map. The x-y-z 
size is provided at the lower-left edge of the box; white boxes represent fully connected layers; the 

arrows denote the different operations. 
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3. Experiments 

3.1. Dataset 
The original dataset of crack classification comes from [10], which is divided into the positive crack 
image set and negative crack image set for the image classification task. Each set has 20k images of 
227 x227 pixels. The dataset is generated from 458 high-resolution images (4032x3024 pixels) with 
the method proposed by [4]. Based on the original dataset, we constructed three datasets with different 
kinds of noise to validate the performance of RNN based on the ML-CSC model. The experimental 
flow chart is shown in Figure 2. 

 
Figure 2. The experimental flow charts. 

 
Dataset 1: we randomly constructed a 12k training set, 4k validation set and 4k testing set from the 

original dataset. In Dataset 1, the positive and negative crack images are shown in Figure. 3. 
 

 
Figure 3. The positive crack image (left) and negative crack image (right) of Dataset 1. 

 
Dataset 2-1: we randomly constructed a 12k training set, 4k validation set and 4k testing set from 

the original dataset, then we added Gaussian noise with a mean of 0 and a variance of 0.05 to the 
training set of Dataset 2. In the training set of Dataset 2-1, the positive and negative crack images are 
shown in Figure. 4. 
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Figure 4. The positive crack image (left) and negative crack image (right) of Dataset 2-1. 

 
Dataset 2-2: we randomly constructed a 12k training set, 4k validation set and 4k testing set from 

the original dataset, then we added Gaussian noise with a mean of 0 and a variance of 0.075 to the 
training set of Dataset 2. In the training set of Dataset 2-2, the positive and negative crack images are 
shown in Figure. 5. 

 
Figure 5. The positive crack image (left) and negative crack image (right) of Dataset 2-2. 

 
Dataset 3: we randomly constructed a 12k training set, 4k validation set and 4k testing set from the 

original dataset, then add pepper and salt noise with a noise density of 0.03 to the training set. In the 
training set of Dataset 3, the positive and negative crack images are shown in Figure. 6. 

 
Figure 6. The positive crack image (left) and negative crack image (right) of Dataset 3. 

3.2. Experimental Procedure and Results 
In this paper, RNN model was constructed through a ML-CSC model with three convolutional layers 
with 32, 64 and 128 filters, kernel sizes of 15 × 15, 10 × 10 and 6 × 6, strides of 4, 4 and 2, and the 
classifier 𝜁 (𝜸 ) is a three-layer CNN. A supervised learning setting is adopted to minimize an 
empirical risk over N training samples of signals 𝑦  with labels ℎ . The function ℒ is a loss function to 
be minimized during training, where the cross-entropy is used in this paper.  Nonnegativity constraints 
are also enforced on the representations, resulting in the application of ReLUs and biases as shrinkage 
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operators. Models are trained with stochastic gradient descent (SGD) with momentum, decreasing the 
learning rate every so many iterations. The details have been shown in Table 1. Moving to a complete 
comparison, we will demonstrate the ML-ISTA architecture compared with CNN and LBP 
architecture in different cases and make use of a PyTorch implementation. The configuration of this 
experiment is 16G memory and one NVIDIA GeForce 1080Ti. 
Table 1. Detailed description of the recurrent neural network based on ML-CSC with 3 convolutional 

layers, unfolding = 6. 
Recurrent neural network 
Input: signal 𝐲, dictionaries 𝐷 , 𝐷 , 𝐷 , 𝐷 , 𝐷 . 
Init: Set 𝜸  = 𝐲 

1: 𝜸  = 𝐷 𝐲 
2: 𝜸  = 𝐷 𝜸  
3: 𝜸  = 𝐷 𝜸  
4:  for 𝒌=1: 6 do 
5:   𝜸𝒊  =𝐷( , )𝜸  
6:     for 𝒊 =1: 3 do 
7:       𝜸  = ReLU (𝜸𝒊 − 𝐷 (𝐷 𝜸𝒊 − 𝜸  )) 
8: 𝜸  = 𝐷 𝜸  
9: 𝜸  = ReLU (𝐷 𝜸 ) 

10:  𝜸  = ReLU (𝐷 𝜸 ) 
11: 𝑚𝑖𝑛 ∑ ℒ  (ℎ , 𝜁 (𝜸 )) 

 
• CNN: the case of 0 unfoldings corresponds to the typical feed-forward CNN. 
• ML-ISTA: the case with 6 unfoldings effectively implements an 18-layers-deep architecture 

by default. 
• Layered Basis Pursuit: the approach proposed in [11], which unrolls the iteration of ISTA for 

a single-layer BP problem at each layer. In contrast, the proposed ML-ISTA unrolls the 
iterations of the entire Multi-Layer BP problem. 
 

First of all, the models were trained in the Dataset 1 of 10,000 training samples and 10,000 testing 
samples. The epoch is set to 30, 60 and 90. In different epochs, we compare the ML-ISTA, CNN, and 
LBP methods that the testing results are shown in Figure. 7 and Table 2.It can be seen from the 
resulting chart of Dataset 1 that the LBP algorithm is better than the CNN and ML-ISTA algorithms 
for crack classification when the epoch is very tiny. As the epoch increases, the accuracy of the three 
algorithms is increasing. Nevertheless, in the end, the accuracy of the ML-ISTA algorithm for crack 
classification is significantly higher than that of CNN and LBP algorithms. On Dataset 1, the 
inferencetimes of CNN, ML-ISTA and LBP algorithms are very similar. 

 
Figure 7. Comparison of different architectures on Dataset 1, all networks have the same number of 

parameters. 
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Table 2. Classification results for different architectures for Dataset 1 (epoch=60).  
Model CNN ML-ISTA Layered BP 

Test accuracy 98.90% 99.36% 98.84% 
 
Secondly, the models were trained in the Dataset 2-1 and Dataset 2-2 of 10,000 training samples 

and 10,000 testing samples. The epoch is set to 30, 60 and 90. In different epochs, we compare the 
ML-ISTA, CNN, and LBP methods that the testing results are shown in Figure. 8 and Table 3. It can 
be concluded that in the Gaussian noise environment with different variances, the LBP algorithm is 
better than CNN and ML-ISTA algorithms for crack classification when the epoch is very tiny. 
However, as the epoch increases, the accuracy of the CNN and ML-ISTA algorithm are increasing, 
and the LBP algorithm has fluctuations sharply. In the end, the LBP algorithm has been unable to 
converge; the accuracy of the ML-ISTA algorithm for crack classification is significantly higher than 
that of CNN algorithms. 

 
Figure 8. Comparison of different architectures on the Dataset 2-1 (top) and Dataset 2-2 (bottom), all 

networks have the same number of parameters. 
 

Table 3. Classification results for different architectures for Dataset 2-1 and Dataset 2-2. The LBP 
algorithm has been unable to converge (epoch=60). 

 
Test accuracy ofModel CNN ML-ISTA Layered BP 
 Dataset 2-1  98.88% 99.20%           - 
 Dataset 2-2   98.85% 99.17%           - 

 
Finally, the models were trained in the Dataset 3 of 10,000 training samples and 10,000 testing 

samples. The unfolding of ML-ISTA and LBP is set to 3, 6 and 9 and the epoch is set to 90. In 
different epochs, we compare the ML-ISTA, CNN, and LBP methods that the testing results are shown 
in Figure. 9 and Table 4. It can be seen from Figure.9 and Table 4. Under different unfolding, the 
accuracy of the ML-ISTA algorithm for crack classification is significantly higher than the results of 
the CNN and LBP algorithms. In Dataset 3 the case with 3 unfoldings of the test accuracy of the ML-
ISTA algorithm is the highest. 
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Figure 9. Comparison of different architectures and different unfoldings on Dataset 3, all networks 
have the same number of parameters, unfolding = 3 (left), unfolding = 6 (middle) and unfolding = 9 

(right). 
 

Table 4. Classification results for different architectures for different unfoldings. In the case of 
unfolding=9, the LBP algorithm has been unable to converge (epoch=90). 

Model Test accuracy 
CNN 98.84% 

ML-ISTA, unfolding=3 99.35% 
ML-ISTA, unfolding=6 99.25% 
ML-ISTA, unfolding=9 99.27% 

Layered BP, unfolding=3 99.29% 
Layered BP, unfolding=6 98.83% 
Layered BP, unfolding=9 - 

 
Table 5. Classification results for different architectures for different datasets. In the case of Dataset 2, 

the LBP algorithm has been unable to converge (epoch = 90, unfolding = 6). 
Model CNN ML-ISTA Layered BP 
Dataset 1 98.90% 99.36% 98.84% 
Dataset 2-1  98.88% 99.20% - 
Dataset 2-2  98.85% 99.17% - 
Dataset 3  98.84% 99.25% 98.83% 

4. Conclusion 
Through the above experiments, we found that ML-CSC is a promising model for crack detection, but 
ML-CSC is excessively dependent on the accuracy of the solving algorithm and the number of 
unfolding. The accuracy of the LBP on the testing set is better than ML-ISTA and CNN when the 
training epochs are small, but with the increase of the training epochs, the accuracy of ML-ISTA on 
the testing set is better than LBP and CNN. Moreover, LBP is very unstable, and it will fail to 
converge when the noise is large and the number of unfoldings is too high. For the dataset of this 
experiment, when the number of ML-ISTA unfoldings is 3, the testing set has the highest accuracy. 
No matter in different noise environments, different unfoldings, or different training epochs, the final 
test accuracy of ML-ISTA is better than CNN and LBP. Also, the speed is comparable to CNN or LBP. 
In the future, the ML-CSC model combing with current mainstream methods will be used to design a 
sparse convolutional neural network for object detection and semantic segmentation of the crack 
images. 
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