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Abstract. The processes of unsteady heat transfer in the mode of thermogravitational 

convection in a vertical channel with solid walls of finite thermal conductivity after a sudden 

heating from bottom was studied numerically by the finite element method in three-

dimensional problem statement. The system of thermogravitational convection equations was 

solved in the Boussinesq approximation in the variables of vortex–vector potential of the 

velocity field and temperature. The calculations were performed with the Prandtl number of 10, 

the Grashof number of 5000, and the ratio of the thermal conductivity of solid walls to the 

thermal conductivity of the liquid equal to 6.29. Distributions of the unsteady temperature field 

into the liquid and solid walls, temperature gradient fields, and velocity fields in the liquid 

were obtained. The process of formation, loss of axial symmetry and subsequent development 

of the rising stream  was shown. 

1.  Introduction 

Knowledge of common and local characteristics of non-stationary conjugate natural convective heat 

transfer is necessary not only in the design of technical systems such as the passive cooling system of 

a nuclear reactor, but also in the analysis of various-scale geophysical phenomena. An example is a 

system of temperature observations in a water-filled well, which serves as a tool for geothermal 

research. The well inevitably develops an unsteady process of conjugate natural convective heat 

transfer with fluid flows of complex spatial shape (screw flows), which significantly distorts the 

results of the necessary high-precision temperature measurements. Understanding the patterns of non-

stationary processes of conjugate natural convective heat transfer occurring in liquid-filled vertical 

channels with walls of finite thermal conductivity is important and relevant from the point of view of 

analyzing the processes occurring in geophysical and technological systems. The analysis of available 

information on the results of research in natural and laboratory conditions, as well as the results of 

numerical studies, has shown that data on common and local characteristics of non-stationary 

processes of conjugated natural convective heat transfer is insufficient. Similarly, there is insufficient 

information about the influence of thermal parameters of materials and the geometry of the region on 

these patterns. 

Unsteady conjugated natural convective heat transfer in a high vertical channel with massive walls 

of finite thermal conductivity after sudden heating of the bottom can be the simplest model of natural 

and man-made systems, such as faults and cracks in the earth's crust, deep depressions on the bottom 

of the oceans, deep quarries and workings [1]. Mantle plumes, volcanoes, and kimberlite pipes occupy 

an important place among geodynamic systems where flows occur due to heating from below [1]. The 
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energy source of the formation of mantle plumes and kimberlite pipes is the heat flux from the upper 

mantle to the earth's surface. 

Experimental and numerical studies of the processes of plume formation and moving out to the day 

surface, developing over linear heat sources were performed at the IT SB RAS [2, 3]. The evolution of 

the spatial flow shape, temperature and velocity fields depending on the input power was studied. The 

development of a non-stationary convective flow in a rectangular cavity, after sudden heating from 

below, in a conjugate two-dimensional setting was studied in [4].  

It is extremely difficult to obtain data on the distribution of the non-stationary temperature field 

inside solid walls during physical modeling. The application of mathematical modeling is relevant. 

The paper presents the results of numerical simulation of three-dimensional unsteady conjugate heat 

transfer in a regime of thermogravitational convection in a vertical cylindrical channel with solid walls 

of finite conductivity fluid-filled after a sudden heating from below. By the finite element method [5] 

the equations of thermogravitational convection are solved in the Boussinesq approximation in terms 

of temperature, vortex, and vector potential of the velocity field. The results obtained numerically will 

be used for planning and optimizing experimental studies in the closest possible problem statement. 

2.  Model 

Calculations are made in a three-dimensional computational domain in Cartesian coordinates. The 

computational domain consists of a liquid-filled vertical cylinder with a radius to height ratio of 1:5. 

The liquid-filled domain is surrounded by massive walls with finite thermal conductivity with a 

thickness of 0.3 radius of the cylinder. Thus, the ratio of the radius of the calculated domain to its 

height is 13: 50. An ideal thermal contact condition is set on the inner side of the walls. The outer side 

of the walls is heat-insulated. The upper end of the calculated domain is isothermic cold, and the 

bottom of the area is suddenly heated and maintained at a constant temperature. The temperature of 

the liquid and solid walls at the initial time corresponds to the temperature of the upper end. 

The problem is solved in dimensionless form, the radius of the cylinder filled with liquid R is chosen 

as the geometric scale. The speed scale is used for ν/R, where v is the kinematic viscosity of the liquid. 

The temperature scale is ΔT = Tmax – Tmin, where Tmax and Tmin are the temperatures on the hot and 

cold walls, respectively. The time scale is ν/R2. 

The process is unsteady conjugate convective heat transfer in a regime of thermogravitational 

convection described by the dimensionless Navier-Stokes equations in the Boussinesq approximation, 

which is written in terms of temperature, vector potential of the velocity field and vortex: 
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where T, ω, ψ, V are the temperature, the vortex, the vector potential of the velocity field, and the 

velocity field, respectively. 
In dimensionless equations, Gr = (β∙g/ν2)∙ΔT∙R3 is the Grashof number. Here β is the volume 

expansion coefficient of the liquid, g is the acceleration of gravity, ν is the kinematic viscosity of 

liquid, and ΔT is the temperature difference. Prandtl number Pr = ν/a, where a = λF/ρ∙CP is the 

coefficient of thermal diffusivity of the liquid, λF is coefficient of thermal conductivity of the liquid, p 

is the density, and CP is the heat capacity at constant pressure.  
The problem is solved under the following boundary conditions. The maximum temperature in the 

system is set at the bottom of the area at the initial time: 
1Г

1T = . At the upper end of the area, the 

minimum temperature in the system is maintained 
2Г

T 0= .  
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The outer surface of the vertical walls is heat-

insulated 

3Г

0
T
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=


. On the inner surface of the 

walls, the conditions for non-flow, adhesion, and 

ideal thermal contact are set: 
4Г

0 = , 

4 4Г Г
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4- 4Г Г
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Numerical simulation was performed using the 

finite element method on a tetrahedral grid with 

212 thousand nodes. Linear basis functions are 

used in the calculations. The grid fragment in the 

height section is shown in figure 1. Calculations 

are performed for the Prandtl number Pr = 10, 

the Grashof number Gr = 5000, and the ratio of 

the thermal conductivity of solid walls to the 

thermal conductivity of the liquid λS/λF = 6.29. 

3.  Result and discussion 

Calculations of non-stationary conjugate heat transfer are performed in the regime of 

thermogravitational convection with the ratio of the radius of the area filled with liquid to its height of 

1:5. 

 

  

 
c 

 

a b d 
Figure 2. Temperature field on the time layer t = 20 in sections: a – x = 0; c – z = 1, velocity field on 

the time layer t = 20 in sections: b – x = 0; d – z = 1. 
 

Figure 2 shows the temperature and velocity fields on the time layer t = 20. It is noticeable that due 

to higher thermal conductivity, solid walls warm up faster than the liquid layer in the bottom area. As 

a result, an annular upward flow of hot liquid is formed on the inner surface of the walls. A downward 
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Figure 1. A fragment of the grid at height z = 0 
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flow of liquid is formed in the center of the cylindrical area. Figure 3 shows that the flow and 

temperature field lose their axial symmetry and the initial moment of formation of the rising plume is 

noticeable. 

 

  

 
c 

 

a b d 
Figure 3. Temperature field on the time layer t = 60 in sections: a – x = 0; c – z = 1, velocity field on 

the time layer t = 60 in sections: b – x = 0; d – z = 1. 
 

Under the action of the descending central flow of cold liquid, the upward flow of the plume is 

pushed to the wall (figures 3-4). After the critical mass of the heated liquid accumulates, a local 

discharge of the hot liquid occurs (figure 5). 

  

 
c 

 

a b d 
Figure 4. Temperature field on the time layer t = 100 in sections: a – x = 0; c – z = 1, velocity field on 

the time layer t = 100 in sections: b – x = 0; d – z = 1. 

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1



XXXVI Siberian Thermophysical Seminar (STS 36) 2020
Journal of Physics: Conference Series 1677 (2020) 012189

IOP Publishing
doi:10.1088/1742-6596/1677/1/012189

5

 
 
 
 
 
 

 

  

 
c 

 

a b d 
Figure 5. Temperature field on the time layer t = 100 in sections: a – y = 0; c – z = 1; d – r = 1, 

velocity field on the time layer t = 100 in sections: b – y = 0. 
Figure 5d shows the temperature distribution on the inner wall surface. Local overheating is clearly 

visible in the place where the plume was pushed, which led to the release of hot liquid. In figure 4b, it 

can be seen that a local increase in the lift flow led to an increase in the downward flow on the 

opposite wall. This further increases the uneven heating of the solid wall. 

  

 
c 

 

a b d 
Figure 6. Temperature field on the time layer t = 200 in sections: a – x = 0; c – z = 1, velocity field on 

the time layer t = 200 in sections: b – x = 0; d – z = 1. 
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An interesting feature can be noted in figures 4a, 4b, 5a, 5b, which represent the temperature field and 

the velocity field at the same time, but in different sections. It is noticeable that the temperature field 

and velocity field lost their symmetry in the x-section, but this did not happen in the y-section. The 

distribution of the temperature and velocity fields in the y-section reflects the process of detaching the 

head part of the plume and lifting it to the cold upper end. Whereas the distribution of the temperature 

field and the velocity field in the cross section over x shows the process of local ejection of hot liquid 

masses over the surface of the hot wall. 

Another noteworthy feature is the phenomenon of separation of the boundary layer, which is 

noticeable in figures 4a, b. It can be seen that at a height of 2.5, the updraft breaks away from the wall 

and moves to the center of the area. The downward flow behaves in a similar way, separating at a 

height of 1.5 from the wall and mixing to the center of the area. Due to this, the growth of the 

upstream flow along the opposite wall is blocked. 

Figures 6-7 show the further evolution of the process of local discharge of hot liquid along the wall. 

It can be seen that under the action of the increasing hot ascending flow on one side of the wall and the 

increasing cold descending flow on the opposite side of the wall, the inhomogeneity of wall heating 

significantly increases. As a result, when the next plume is born, which is visible in figure 7a, the 

plume will also be pushed in the same direction as the previous plume. That is, there will be another 

local release of hot liquid in the same place. The initial stage of this process is visible in figure 6a, by 

the displacement of the ascending central flow to the wall. 

 

  

 
c 

 

a b d 
Figure 7. Temperature field on the time layer t = 200 in sections: a – y = 0; c – z = 1; d – r = 1, 

velocity field on the time layer t = 200 in sections: b – y = 0. 
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a b d 

Figure 8. Temperature field on the time layer t = 320 in sections: a – x = 0; c – z = 1, velocity field on 

the time layer t = 320 in sections: b – x = 0; d – z = 1. 
 

  

 
c 

 
a b d 

Figure 9. Temperature field on the time layer t = 320 in sections: a – y = 0; c – z = 1; d – r = 1, 

velocity field on the time layer t = 320 in sections: b – y = 0. 
 

At the same time, figures 8-9 show that with further heating of solid walls, there is a tendency to 

change the situation. Figure 8a shows that the next central rising flow that has begun to form starts 

shifting to the opposite wall. In other words, it is possible, even if temporarily, to implement the 

oscillatory process of the emergence and development of a large-scale two-vortex flow observed in the 

two-dimensional case [4]. In which the intensity of the flow alternately changes in the right and left 

vortex. As a result, a wave-like pulsating rising stream is formed. 
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Conclusions 

The process of unsteady conjugate heat transfer in the regime of thermogravitational convection in a 

vertical cylindrical channel with massive walls of finite thermal conductivity, after sudden heating 

from below, has been studied numerically in the conjugate three-dimensional formulation using the 

finite element method. The system of thermogravitational convection equations has been solved in the 

Boussinesq approximation in terms of vortex, vector potential of the velocity field and temperature. 

The calculations have been performed with the Prandtl of 10, the Grashof number of 5000, and the 

ratio of the thermal conductivity of solid walls to the thermal conductivity of the liquid equal to 6.29. 

Distributions of the non-stationary temperature field in the liquid and solid walls, temperature gradient 

fields, and velocity fields in the liquid have been obtained. 

Due to the higher thermal conductivity of solid walls, they warm up faster, resulting in a more 

dynamic growth of an upward flow at their surface. An ascending flow of hot liquid along the heated 

wall generates a descending flow of cold liquid, which interacts with the periphery of the ascending 

flow. Loss of stability in the azimuthal direction on the leading edge of the hot liquid ascending flow 

at the vertical wall leads to a break of the axial symmetry of the convective flows. This leads to local 

overheating of the wall section and local discharge of hot liquid along the wall. The temperature field 

of the solid wall becomes inhomogeneous. 

This research was realized under the project III.18.2.5, number of state registration АААА-А17-

117022850021-3 and was partially supported by the RFBR (Grant No. 19-08-00707 а). 

References 

[1] Dobrecov N.L. 2011 Osnovy tektoniki i geodinamiki: Ucheb. posobie (Novosibirsk: Novosib. 

gos. un-t.) 492 s. (In Russian) 

[2] Antonov P.V., Arbuzov V.A., Berdnikov V.S. et al. 2012 Optoelectronics, instrumentation and 

data processing 48(3) 293–302 

[3] Arbusov V.A., Berdnikov V.S., Bufetov N.S. et. al. 2014 Optoelectronics, instrumentation and 

data processing 50(5) 466–73 

[4] Mitin K.A., Berdnikov V.S., Mitina A.V. 2018 Papers in English 14th International scientific-

techical conference. In 8 Volumes p 181–84 

[5] Solovejchik YU.G., Royak M.E., Persova M.G. 2007 Metod konechnyh elementov dlya 

resheniya skalyarnyh i vektornyh zadach. (Novosibirsk: Izd-vo NGTU) 896 s (In Russian) 


