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Abstract. The results of the analysis of the problem of wetting the microstructured flat wall 
surface during adiabatic liquid evaporation into a boundary layer of air flowing at right angles 
are presented. The basic conservation laws are formulated in the form of differential equations 
that allow calculating the velocity and height of liquid rise in capillaries, wetting dynamics, 
depth and mass of the liquid in capillaries, and the evaporation surface area. 

1.  Introduction 
The development of modern technologies in the field of power and microelectronics, as well as high-
performance microchips, powerful compact power keys and drivers with high heat release requires the 
creation of new methods for removing high heat fluxes [1, 2]. One of the possible approaches to solve 
the problem of heat removal from electronic components while maintaining or reducing the mass and 
dimensions of products is the use of capillary-porous coatings (modifications) of the heat exchange 
surface, which can provide passive supply of cooling liquid working fluid to the heat release areas due 
to capillary pressure. Various methods of creating micro-, nano-, and combined structured surfaces 
with the required properties have been developed; these are, for example, a porous structure [3], ver-
tical micro-columns [4], open rectangular micro-channels [1, 3, 5], and sintered coatings [6]. 

To date, studies of heat and mass transfer on structured surfaces based on an array of open micro-
channels [1, 3, 5] that have a high permeability to liquid, which leads to low viscous friction at a high 
heat flux removed by evaporation, are relevant. These modifications can be used to cool electronic 
components with a thermal load of more than 100 W/cm2. Due to the high capillary pressure, micro-
channel arrays can pump the working fluid over long distances at unprecedented velocities, even over-
coming the force of gravity, which is due to the unique hierarchical absorption structure. It is found in 
[7] that the velocity of the working fluid through a vertically arranged structured glass sample can 
reach 3.8 cm/s. 

It should be emphasized that the task of removing high heat fluxes from the high-temperature 
(heat-loaded) surfaces of the target products due to evaporation of the working fluid consists of two 
parts: the supply of the working fluid to the heat release area and the removal of steam from the heat 
exchange surface to the ambient medium. Progress in the development of efficient structured surfaces 
allows solving the first part of the problem. To solve the problem in its entirety, it is necessary to en-
sure sufficient convective heat and mass transfer on the modified surface under conditions of liquid 
evaporation and capillary wetting of a specific surface.  
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This paper presents a simple physical and mathematical model for calculating the dynamics of wet-
ting of a microstructured flat wall during evaporation and entrainment of working fluid vapor into the 
boundary layer of air flowing over the wall at a right angle. 

2.  Problem statement 
Figure 1 shows the problem statement and the main parameters of the problem. The dynamics of a 
liquid rising vertically along a semi-open capillary is considered. The liquid is a wetting agent for the 
base material. Let us assume that the liquid has constant temperatureLt  and density Lρ . The tempera-
ture of the liquid and the base material is assumed to be equal to the equilibrium temperature of the 
evaporation surface, and then we define it as the temperature of the liquid. Such conditions are imple-
mented in special refrigeration units with feedback closed to the temperature of the evaporating liquid, 
which can be measured by thermocouples or IR receivers [8, 9]. The heat required for liquid evapora-
tion is supplied only by convection from the air flow. Such conditions are commonly referred to as 
adiabatic evaporation. Similar conditions can be achieved by heating the air flow for the temperature 
of the evaporating liquid to correspond to the ambient temperature [10]. 

 

Figure 1. The scheme of liquid evaporation from a flat modified surface 
into the stagnation flow of air. 

 
The origin of coordinates is associated with the lower face of the modified surface immersed in a tank 
of liquid. The immersion depth is 0z . At the initial time (at 0τ  = 0) we assume that the liquid fills the 
capillaries only up to the level in the tank, which corresponds to the overlap of the cross-section of the 
capillaries by the removed partition. As the liquid rises through the capillaries, its level in the tank 
drops. However, we neglect the dynamics of the liquid level drop in the tank in the first approxima-
tion, considering that the tank capacity is large enough. We obtain the system of equations describing 
the rise of the liquid in the capillaries. 

3.  The differential equation of fluid dynamics in a single capillary 
3.1 Capillary filling with liquid 
For the elementary section of a single capillary in the projection on the vertical direction of the coor-
dinate system we write the law of conservation of mass: 
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 0z
x

dm
dz dm

dz
+ =   (1) 

The change in the mass of the liquid in the elementary volume occurs due to changes in the position of 
the meniscus over time and depending on the position of the elementary volume over the capillary 
height. Changing the position of the meniscus leads to a change in the cross-sectional area of the liquid 

( ),S z τ  in the capillary and the area of contact between the liquid and air (the area of evaporation of 

the liquid ( ),RL z dzτ ). The intensity of liquid evaporation in general is ( ),evj z τ . Then from (1) it fol-

lows: 

 
( )

0z
L ev R

d Sw
j L

dz
ρ + =   (2) 

 
In the first approximation, we assume that the velocity of the liquid along the capillary at each point 
along the height of the column of liquid is constant ( )zw f= τ  and is determined in accordance with 

the law of conservation of momentum, then: 
 

 ev
R

L z

jdS
L

dz w
= −

ρ
  (3) 

Let us take the shape of a single capillary in the form of a triangular groove with a depth ( ),a z τ  and 

width ( ),b z τ . We associate the change in the cross-sectional area of the liquid ( ),S z τ  and the length 

of the meniscus curve ( ),RL z τ with the depth of the capillary and the wetting angle θ , which for a 

given wall material and type of liquid is considered constant. 2 RS ab S= − , where 2
RS R= β  is the 

area of the sector formed by the meniscus of the liquid. For the calculation, we assume that the vector 
of the surface tension force lies in the plane perpendicular to the axisz , then the radius of the menis-

cus can be calculated by the formula ( )( )2cosR b= α + θ , the half-opening angle of the sector β  is 

related to the wetting angle θ  and the half-opening angle of the groove α  by the ratio 
/ 2α + θ + β = π . Eventually, 2b a tg= ⋅ α ; 

 ( ) ( )( ) ( ) ( )
1 2

2 1
2 2

, 2 ; , 1
cos( ) 2cosR

c c

tg c
L z R a S z a tg

α π − α + θ  
τ = β = ⋅ τ = α −  α + θ α + θ ��������� �����������

, (4) 

where 1c  and 2c  are the constants defined only by the wetting angle and the half-opening angle of the 
triangular groove. Let us substitute the obtained relations in equation (3): 

 
0

1
0

22

z

ev
L z z

c
a a j dz

w c
= −

ρ ∫   (5) 

The resulting expression determines the depth of the liquid column in a triangular capillary when the 
liquid moves along the capillary at a velocity( )zw τ  and evaporates with a mass flow rate ( ),evj z τ . 

The depth of the liquid at the boundary of the capillary with the liquid in the tank is 0a . It can be as-
sumed that at this boundary, the liquid completely fills the triangular channel, and the depth of the liq-
uid is equal to the depth of the channel. 
 
3.2. Influence of the evaporation rate on the filling of the capillary with liquid 
To determine the intensity of liquid evaporation from the capillary under conditions of exclusively 
convective heat supply from the incoming air flow (adiabatic evaporation conditions), we can write: 

w ev evq j h= , where evh  is the latent heat of liquid vaporization at the equilibrium temperature of its 
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surface in the meniscus region. In the presence of an active thermal stabilization system, it can be as-
sumed that the temperature of the liquid is the same throughout the entire volume of the capillary. In 
the future, we will talk about this temperature as the temperature of the liquid. The heat supplied to the 
liquid meniscus from the incoming air flow can be determined by the formu-
la: ( )0 0 0 0w p w Tq w c T T St= ρ − , where the Stanton number is determined depending on the mode of air 

flow along the modified surface and the angle of inclination of the surface to the incoming flow. With 
the vertical orientation of the plate and the laminar flow mode, neglecting the influence of the trans-
verse vapor flow of the liquid that occurs during evaporation, we can write [11]: 
 

 
0.636

1.14

RePr Re Pr
T

Nu
St = = ,  (6) 

 
where 0 0 0Re w L= ρ µ  is the Reynolds number based on the velocity of the incoming air flow and the 
length of the modified section of the plate, and Pr 0.7=  is the Prandtl number for air. As follows from 
the above relations, for the conditions under consideration, the evaporation intensity is constant along 
the length of the plate and is equal to 
 

 ( )0 0
00.636

Re
1.14

Pr

p
ev w

ev

c
j T T const

h L

µ
= ⋅ − = . 

 
Then the expression (5) can be converted to the form: 

 

 
( )01

0
22

ev

L z

j z zc
a a

c w

−
= −

ρ
  (7) 

 
3.3. The velocity and acceleration of liquid rise in a capillary 
Let us determine the change in the height of a liquid column 1 0h z z= −  over time: ;z zh w h w= =ɺ ɺɺ ɺ  
based on Newton's second law: 

 
1

n

z zi
i

mw F
=

=∑ɺ . 

 
The mass of the liquid contained in the capillary, depending on the height of the liquid column, can be 
determined as follows 
 

 1

0

2 2 2 31 1
2 2 0 0

2

1 1

2 6

z ev
L L evz

z L z

jc c
m c a dz c a h j a h h

w c w

  
= ρ = ρ − +   ρ  

∫   (8) 

 
The column of liquid in the capillary is affected by gravity, capillary pressure due to the curvature 

of the liquid-air interface, and the friction force when the liquid moves along the channel along the 
walls. In the first approximation, the friction force can be neglected, assuming that the velocity of the 
liquid is small. When the plate is vertically oriented, the force of gravity can be defined as 1zF mg= − . 
The “minus” sign determines the direction of the force against the positive direction of the coordinate 
z . The surface tension force is directed tangentially to the liquid-air interface and is determined by the 

formula: 2 cF l= σ
���

, where 
с

l  is the length of the contact line. In contrast to closed capillaries, as the 
liquid rises along the semi-open capillary, the length of the contact line will change, both by changing 
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the meniscus geometry and by evaporation. In addition, the angle γ , whcih determines the projection 
of the surface tension force on the axis z  will also change . We associate these values with the height 
of the liquid column in the capillary 

 

Figure 2. Determining the projection of the surface tension force on the axis z. 
 
As follows from figure 2, ( ) ( )0 1 cos ; 2 cos .ctg a a h l hγ = − α = γ  As a result, the projection of the 

surface tension force on the axisz : ( )2 0 12 cos coszF a a= σ − θ α . Write down the differential equa-

tion for determining the dynamics of the liquid column in the capillary, taking into account (7). 

 ( )2 2 31 1 1
2 0 0

2 2

1 1 2 cos

2 6 cos 2
ev ev

L ev
z L z L z

j j hc c c
c a h j a h h h g

w c w c w

    σ θρ − + + =     ρ α ρ   

ɺɺ . (9) 

Let us multiply the left and right parts of the equation by 2
2L zw c hρ , and taking into account zw h= ɺ  

we get: 

 ( )( )2 2 2 2
4 3 4 3 3 53c h c c hh c h h g c c h− − + =ɺ ɺ ɺɺ ɺ , (10) 

 
where: 2

3 1 22evc c j c= , 4 0Lc a= ρ , 5 2c cos cos= σ θ α . Equation (10), supplemented by initial conditions 
for the position and velocity of the interface between air and liquid filling the capillary, allows solving 
the problem of wetting the modified surface when the liquid evaporates into the incoming air flow. 
The resulting equation is a rigid nonlinear ordinary second-order differential equation. To solve this 
problem, special, usually implicit numerical methods are required. 

4.  Conclusions 
The analysis of the problem of wetting a modified surface of a flat wall during adiabatic evaporation 
of the liquid into a boundary layer of air running at a right angle has been carried out. The basic con-
servation laws are formulated in the form of differential equations that allow calculating the height of 

liquid rise in capillaries (10), wetting dynamics ,z zh w h w= =ɺ ɺɺ ɺ , depth (7) and mass of liquid in capil-
laries (8), and the evaporation surface area (4). It is shown that the solution of the problem requires 
integration of a rigid nonlinear ordinary second-order differential equation. 
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