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Abstract. Previously, the properties of the Lie group G, which is an equivalence group of
the eikonal equation, wave equation, and other differential equations (DEs), have been studied
by the author in the two-dimensional case; various applications to mathematical physics and
differential geometry have been obtained. This paper presents a study of the three-dimensional
analogue of the G group, the ten-parameter G10 group, which is a subgroup of the main
equivalence group of the three-dimensional eikonal equation, acoustics equation, and other DEs.
Its differential invariants (DIs) up to the third order and invariant differentiation operators
(IDOs) were calculated. The geometric meaning of some DIs of the group G10 (the scalar
curvature R of Riemannian space with the metric dl2 = n2(x, y, z)(dx2 + dy2 + dz2), its first
and second Beltrami differential parameters ∆1u and ∆2u, and other quantities) and IDOs was
found. An expression for R was derived in terms of other DIs of the group G10. To obtain
this expression, and DIs and IDOs of the group G10, we use the geometric analogy with the
two-dimensional case and differential and Riemannian geometry.

1. Introduction
Below, group terms are understood in the sense of [1]. This paper is a continuation of the
previous work of the author [2–15]. The line of research can be defined as the study of
differential equations (DEs) of mathematical physics (the theory of propagation of waves of
different nature in inhomogeneous media) based on group and geometric analysis. In [2, 5], a
group approach to the study of DEs of the form F [u,a] = 0 (E0) was proposed, in which the
solution u = u(x) and the parameters (arbitrary element) a = a(x) are considered as equivalent
dependent variables u1 = u, u2 = a (F is a given differential operator, and x are independent
variables). This DE is considered as equation E of the form F [u1,u2] = 0 (with the same
operator F ); the Lie group G admitted by this equation is sought in the space (x,u1,u2) and
is an equivalence group of the equation E0, which is, generally speaking, extended compared
with its equivalence group Geq defined in [1]. In the two-dimensional case, the Lie group G
of transformations of the five-dimensional space (x, y, t, u1, u2), which is an equivalence group
of the eikonal equation (ux)2 + (uy)

2 = n2(x, y), the wave equation uxx + uyy = n2(x, y)utt
(where u1 = u and u2 = n2), and other DEs, was studied in [2,5]. Its differential invariants and
their basis were found and used to obtain the following various applications [2–15]. A group
bundle of a wide class of DEs was constructed (its resolving system was found to admit the Lax
representation) [4,5,15]; new differential identities were obtained [6–10]; a new description of the
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two-dimensional kinematic problem of seismics (geometric optics) was proposed [5,7,13,15]; exact
solutions were found [3, 5, 15]; new transformations for a number of DEs and the relationships
between different DEs were derived; using vector analysis and differential geometry, differential
conservation laws were derived for the eikonal equation (for the first time, [7, 10,15]) and other
DEs [5, 9, 15] and for families of plane curves. These results show a number of new properties
and capabilities of group analysis and are systematized in [5, 15]. Later, the equivalence group
of the two-dimensional eikonal equation was used by Borovskikh [16] for group classification and
search for particular solutions of this equation.

In this paper, we study the properties of the three-dimensional analogue of the group
G — the ten-parameter Lie group G10 of the six-dimensional transformations of the space
(x, y, z, t, u1 = u, u2 = n2). It is a subgroup of the main equivalence group of the three-
dimensional eikonal equation

| gradu|2 def
= (ux)2 + (uy)

2 + (uz)
2 = n2(x, y, z)

for the time field u(x, y, z, t) in an inhomogeneous isotropic medium with the refractive index
n(x, y, z) = 1/v(x, y, z) (where v is the velocity of propagation of waves (signals) in the medium),
the acoustics equation ∆u+(gradu·grad ln ρ)/2 = ρutt (here u1 = u and u2 = ρ), and other DEs.
The eikonal equation is the main mathematical model of kinematic seismics and geometric
optics. The variable t is not explicitly included in this DE; it is represented by the parameter
(coordinate) of the point source. The group G10 was calculated using the above-mentioned
approach based on general theory [1]. In [16], the equivalence group of the eikonal equation was
obtained under the additional condition nu = 0 and equivalence classification of this equation
was performed. In this study, we have an additional variable t and, instead of nu = 0, use the
condition nt = 0 (the parameter of the medium is independent of the position of the source),
which, however, leads to the same group.

In the work, IDOs and DIs of the group G10 up to the third order are found. Some DIs and
their geometric meaning are obtained using Riemannian geometry [17]: these DIs are the scalar
curvature R of Riemannian space with the metric dl2 = n2(x, y, z)(dx2 + dy2 + dz2) and its first
and second Beltrami differential parameters ∆1u and ∆2u. The geometric meaning of the vector
field S(τ ) included in one of the DIs of the second order is also given. An explicit expression
for R is obtained in terms of other DIs of the group G10. These quantities and formulas are
three-dimensional analogues of the properties of the group G.

Systems of DEs for calculating DIs and IDOs of the group G based on general theory [1]
are rather cumbersome. Their solutions can be found using analogies, including geometric ones
(serving as heuristic arguments), with DIs and IDOs of the group G.

To make the text self-contained and to be able to compare corresponding formulas for the
two-dimensional and three-dimensional cases, we briefly describe in Section 2 the properties of
the group G as simpler and more compact than those of the group G10. The symbols (a ·b) and
a× b denote the scalar and vector products of the vectors a and b, ∆u is the Laplacian of the
function u, and δij is the Kronecker symbol.

2. Two-dimensional case. The group G and its properties
These properties [2–6,15] are described by the following theorem.

Theorem 1. Let G be an infinite Lie group of point transformations of the space
(x, y, t, u1, u2) for which the infinitesimal operator X of any of its one-parameter subgroup
G1 has the form X = Φ(x, y) ∂/∂x + Ψ(x, y) ∂/∂y − 2Φx(x, y)u2 ∂/∂u2, where Φ and Ψ are
arbitrary conjugate harmonic functions. The second-order universal differential invariant J

2
of

the group G is the set of invariants J1–J15 of the form J1 = t, J2 = u1, J3 = u1t = A1J
2,

J4 = ∆2u
1 def

= ∆u1/u2, J5 = u1tt = A1J
3, J6 = A3J

3, J7 = ∆1u
1 def

= ((u1x)2 + (u1y)
2)/u2 = A2J

2,



Lavrentyev Readings on Mathematics, Mechanics and Physics

Journal of Physics: Conference Series 1666 (2020) 012035

IOP Publishing

doi:10.1088/1742-6596/1666/1/012035

3

J8 = A2J
3, J9 = A2J

7, J10 = A3J
7, J11 = K(x, y) = −∆ lnu2/(2u2), J12 = u2t /u

2, and
J12+i = AiJ

12, i = 1, 2, 3.
The basis of DIs of the group G is formed by the invariants J1 = t and J2 = u1.

Here A1 = Dt, A2 = {u1xDx + u1yDy}/u2 = (J7)1/2(τ · grad)/(u2)1/2, A3 = {u1yDx −
u1xDy}/u2 = −(J7)1/2(ν · grad)/(u2)1/2 are the IDOs of the group G; Dt, Dx, and Dy are
total differentiation operators, gradu1 = (u1x, u

1
y), grad = (Dx, Dy); τ = gradu1/| gradu1|,

ν = − rot (u1k)/| rotu1k| = −(gradu1 × k)/| gradu1| = −τ × β is the Frenet basis (τ is the
unit tangent vector, and ν is the normal unit vector) [18–20] of the plane curve Lτ which is
the vector line of the vector field v = gradu1; the unit vector k along the z axis plays the role
of its binormal. The operators A2 and A3 are proportional to the differentiation operators of
the scalar function f(x, y) in the direction of the Frenet unit vectors τ and ν. Furthermore,
J11 = K(x, y) is the Gaussian surface curvature in three-dimensional Euclidean space with the
linear element (Riemannian metric) dl2 = n2(x, y)(dx2 + dy2); J7 = ∆1u and J4 = ∆2u are
the first and second Beltrami differential parameters of the function u(x, y). The following
formula [3, 4, 13] is valid:

J11 = K(x, y) = ∆ ln J7/(2n2)−A2(J
4/J7)− J7(J4/J7)2.

Any equation of the form F (J1, J2, . . . , J15) = 0, where F is some function, admits the group G.

3. Main (equivalence) group admitted by the three-dimensional eikonal equation
in the space (x, y, z, t, u1 = u,u2 = n2). Group G10

Theorem 2. We denote x = x1, y = x2, z = x3, t = x4, x = (x1, x2, x3, x4), and ∂uk/∂xi = uki
(k = 1, 2; i = 1, 2, 3, 4). The main group of point transformations of the space (x, y, z, t, u1 = u,
u2 = n2) admitted by the eikonal equation F [u1, u2] ≡ (u11)

2 + (u12)
2 + (u13)

2 − u2 = 0 for
u24 = 0 has a Lie algebra of infinitesimal operators X = ξi(x, u1, u2) ∂/∂xi+η1(x, u1, u2) ∂/∂u1+

η2(x, u1, u2) ∂/∂u2, where ξi = Aj(2x
ixj − |x|2δij) + aijx

j + bxi + ci, i, j = 1, 2, 3, aij = −aji ,
Aj, a

i
j (i < j), ci (i, j = 1, 2, 3), b are arbitrary constants (independent of x1, x2, x3, t), |x|2 =

(x1)2 + (x2)2 + (x3)2, ξ4 = ξ(x4), η1 = σu1 + η(x4), η2 = 2u2(σ − µ/2), µ = 4
∑3

j=1Ajx
j + 2b,

σ is an arbitrary constant, ξ(x4), and η(x4) are arbitrary functions. It contains a ten-
parameter subgroup G10 with the basic operators Xi = ∂/∂xi, i = 1, 2, 3 (shift operators),
Xij = xj ∂/∂xi − xi ∂/∂xj, ij = 12, 13, 23 (rotation operators), Z = xi ∂/∂xi − 2u2 ∂/∂u2

(extension operators), Yi = (2xixj − |x|2δij) ∂/∂xj − 4xiu2 ∂/∂u2 (i, j = 1, 2, 3) (inversion
operators).

If we drop the terms with ∂/∂u2 in the operators Z and Yi, we obtain the operators of the
group of conformal transformations in the Euclidean space (x, y, z) [18, p. 371]; the group G10

is its extension to the space x, y, z, t, u1 = u, u2 = n2.
Proof. According to the general theory [1], the invariance conditions of the system

F [u1, u2] = 0, u24 = 0 have the form X
1
F [u1, u2] ≡ 2u1i ζ

1
i − η2(x, u1, u2) = 0, X

1
u24 ≡

ζ24 = 0, where X
1

= X + ζki ∂/∂u
k
i is the first extension operator with the coordinates

ζki = ∂ηk/∂xi + uli ∂η
k/∂ul − ukj ∂ξj/∂xi − uliukj ∂ξj/∂ul. Moreover, both conditions must be

satisfied identically for all variables xi, uk, u1i , and u2i (i = 1, 2, 3, 4; k = 1, 2) on the manifold
{F [u1, u2] = 0, u24 = 0}. Splitting the invariance conditions into different variables, we obtain the
following system of constitutive equations for ξi and ηk: ∂ξi/∂xj +∂ξj/∂xi = µδij (i, j = 1, 2, 3);

∂ξi/∂x4 = ∂ξi/∂uk = 0, ∂ξ4/∂xi = ∂ξ4/∂uk = 0 (i = 1, 2, 3; k = 1, 2), ∂η1/∂xi = ∂η1/∂u2 = 0
(i = 1, 2, 3); ∂η2/∂x4 = ∂η2/∂u1 = 0, η2 = 2u2(∂η1/∂u1 − µ/2). The first subsystem of DEs
containing the function µ is equations for the group of conformal transformations of the space
group (x, y, z) [1,17]. The general solution ξi of these DEs is known and is given in Theorem 2,
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whence we have formulas for µ, η1, and η2. Sequentially setting one of the constants Aj , a
i
j

(i < j), b, and ci equal to one and others equal to zero, we obtain ten basic operators of the
group G10. Calculating their commutators, we obtain Theorem 2.

4. DI sand IDOs of the group G10

Lemma. The scalar curvature R of Riemannian space with the metric dl2 = n2(x, y, z){dx2 +
dy2+dz2} (i.e., with the basic metric tensor gij = δijn

2(x, y, z)) and the first and second Beltrami
differential parameters ∆1u and ∆2u of the function u(x, y, z) for this metric have the form

R = 2{∆ lnn2 + | grad lnn2|2/4}/n2 = 2 div {n1/2 grad lnn2}/n5/2,

∆1u = | gradu|2/n2 = {(ux)2 + (uy)
2 + (uy)

2}/n2,

∆2u = {∆u+ (gradu · grad lnn2)/2}/n2 = div {n gradu}/n3.

The proof follows from the well-known formulas of Riemannian geometry [17, § 8, (8.14);
§ 11, ex. 14 or § 16, ex. 5; § 15, (15.8); § 14].

Theorem 3. The first-order universal DI of the group G10 is the set of invariants
J1 − J3, J7, and J12 of the form (u1 = u, u2 = n2) J1 = t, J2 = u, J3 = ut = A1J

2,
J7 = ∆1u = | gradu|2/n2 = A2J

2, and J12 = (n2t )/n
2. The expressions J4 = ∆2u,

J5 = utt = A1J
3, J6 = A3J

3 or (J6)′ = (gradJ7 · gradut)/n
2 = A′3J

3, J8 = (gradu ·
gradut)/n

2 = A2J
3, J9 = (gradu · grad J7)/n2 = A2J

7 = A′3J
2, (J10)′ = | grad J7|2/n2 =

A′3J
7 or J10 = | gradu × grad J7|/n2 = {J7(J10)′ − (J9)2}1/2, J11 = R, J12+i = AiJ

12,
i = 1, 2, 3, 4, J17 = A4J

3, J18 = div {n[−S(τ ) + τ (τ · grad lnn2)/2}/n3 + | grad lnn2|2/(8n2),
and J19 = div {n[−S(τ ) + τ (τ · grad lnn2)/2 + grad lnn2]}/n3 = J18 + J11/4 and the
expressions J20 = ∆2 ln J7 = div{n grad lnJ7}/n3 and J21 = div {n(J4/J7) gradu}/n3 =
A2(J

4/J7) + J7(J4/J7)2 = J20/2 + J19 are the second-order and third-order DIs, respectively,
of the group G10. Here the quantities ∆1u, ∆2u, and R are defined in the above lemma,

S(τ )
def
= rot τ×τ−τ div τ , τ = gradu/| gradu| is the unit tangent vector of the vector line Lτ of

the vector field gradu. Moreover, S(τ ) = T
def
= grad ln | gradu|2/2 −∆u gradu/| gradu|2. The

operators Ai (i = 1, 2, 3, 4) and A′3 are IDOs and are defined in Theorem 4.
Theorem 4. The IDOs of the group G have the form A1 = Dt, Ai = (λi · D3), where

i = 2, 3, 4, D3 = (Dx, Dy, Dz) = grad, λ2 = gradu/u2, λ4 = (gradu × grad J7)/(u2)3/2, λ3 =

−(u2)1/2(λ2 × λ4) or in equivalent form B1 = Dt, B2 = (J7)−1/2A2|u2≡1 = (τ · grad) = ∂/∂τ ,
B3 = (J7)−1/2(J10)−1A3|u2≡1 = (ν · grad) = ∂/∂ν, B4 = (J10)−1A4|u2≡1 = (β · grad) = ∂/∂β,
so that the IDOs Bi (i = 2, 3, 4) for u2 ≡ 1 are differentiation operators of the scalar
function in the direction of the Frenet unit vectors τ , ν, and β of the vector line Lτ of
the vector field gradu (tangent, principal normal, and binormal unit vectors). The operator
A′3 = (gradJ7 · grad)/u2 = (A3 − J9A2) is also an IDO.

Proof of Theorems 3 and 4 will be carried out jointly since they are interrelated. In order
for the function J to be an invariant of the k-th order and in order for the operator A = (λ ·D),
λ = (λ1, λ2, λ3, λ4), D = (Dx, Dy, Dz, Dt) to be an IDO of the group G10, it is necessary and
sufficient [1] that the function J and the vector λ satisfy the system of first-order linear DEs

X
k
J = 0 (A) X

k
λ = (λ ·D)ξ (B),

where ξ = (ξ1, ξ2, ξ3, ξ4), ξi is the coordinate of the operator X in ∂/∂xi; the role of X is played
by each of the ten operators Xi, Xij , Z, and Yi; X

k
is the k-th extension operator (X

0
= X).
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For k = 0, system (A) is equivalent to the system ∂J/∂xi = 0 (i = 1, 2, 3), ∂J/∂u2 = 0; all its
solutions are the invariants J1 and J2. In all ten operators of the group G10, the coordinates ξ1,
ξ2, and ξ3 are independent of x4 = t and the coordinate ξ4 = 0. Therefore, system (B) for
any k is split into two subsystems X

k
λ′ = (λ′ ·D3)ξ

′ and X
k
λ4 = 0, where λ′ = (λ1, λ2, λ3) and

ξ′ = (ξ1, ξ2, ξ3) for any of the ten operators X. For k = 0, an obvious solution of this system is
λ1 = λ2 = λ3 = 0, λ4 = 1, which gives IDO A1. Further we denote λ′ = λ and ξ′ = ξ.

For k = 1, we have X
1
i = ∂/∂xi ⇒ ∂J/∂xi = 0, ∂λj/∂xi = 0, and X

1
12 = y ∂/∂x −

x ∂/∂y + u1y ∂/∂u
1
x − u1x ∂/∂u

1
y + u2y ∂/∂u

2
x − u2x ∂/∂u

2
y; the operators X

1
13 and X

1
23 are

obtained from X
1

12 respectively, by replacing the symbols y → z and y → z, x → y;

Z
1

= Z − u1x ∂/∂u1x − u1y ∂/∂u1y − u1z ∂/∂u1z − 3u2x ∂/∂u
2
x − 3u2y ∂/∂u

2
y − 3u2z ∂/∂u

2
z − 2u2t ∂/∂u

2
t ;

the operators Y
1
i are linear combinations of X

1
ij , Z

1
, and ∂/∂u2i when acting on J , λi:

Z
1

1 = 2(xZ
1
−y X

1
12 − z X

1
13 − 2u2 ∂/∂u2x), Y

1
2 = 2(y Z

1
+xX

1
12 − z X

1
23 − 2u2 ∂/∂u2y), Y

1
3 =

2(z Z
1

+xX
1

13+y X
1

23−2u2 ∂/∂u2z); X
1

23J is a linear combination of X
1

12J and X
1

13J . Therefore,

system (A) for k = 1 is equivalent to the system of nine independent DEs ∂J/∂xi = 0, X
1

12J = 0,

X
1

13J = 0, Z
1
J = 0, and ∂J/∂u2i = 0 (i = 1, 2, 3) with 14 independent variables, which has five

functionally independent solutions J1, J2, J3, J7, and J12. System (B) for k = 1 is equivalent
to the system ∂λj/∂x

i = 0, ∂λj/∂u
2
i = 0 (i, j = 1, 2, 3), Z

1
λ = λ, X

1
12λ = (λ2,−λ1, 0),

X
1

13λ = (λ3, 0,−λ1), X
1

23λ = (0, λ3,−λ2), which has the solution λ = λ2 = gradu/u2,

whence we have the IDO A2. It can be shown that any solutions of this system has the form
λ = ϕ(ux, uy, uz, u

2)λ2 and does not give other IDOs.
For k = 2, we have X

2
i = ∂/∂xi ⇒ ∂J/∂xi = 0 and ∂λj/∂xi = 0, and the operators Y

2
i are

linear combinations of X
2
ij , Z

2
and the operators Ỹ

2
i (which are simpler than Y

2
i). The forms

of X
2
ij , Z

2
, Y

2
i, and Ỹ

2
i are not given here as they are cumbersome. Therefore, system (A) for

k = 2 is equivalent to the system ∂J/∂xi = 0, X
2
ijJ = 0, Z

2
J = 0, Ỹ

2
iJ = 0. Substitution of the

expressions for J4 = ∆2u, J11 = R, and J19 in terms of derivatives into this system shows that
they satisfy it and hence are DIs (of the second order). Therefore, J21 and J20 = 2(J21 − J19)
are DIs (of the third order). System (B) for k = 2 is equivalent to system (B∗) of the
form ∂λi/∂x

j = 0 (i, j = 1, 2, 3), Z
2
λ = λ, X

2
12λ = (λ2,−λ1, 0), X

2
13λ = (λ3, 0,−λ1),

X
2

23λ = (0, λ3,−λ2), Ỹ
2
iλ = 0 (i = 1, 2, 3), which is very cumbersome. Its solution λ3, λ4

can be found using the analogy with the operators A2 and A3 of the group G from Theorem 1
in terms of the differential geometry of the vector lines Lτ of the field gradu. In the three-
dimensional case, the well-known formulas [18–20] for the binormal β and the principal normal ν
of the curve Lτ (k is its curvature) give kβ = rot τ = rot {gradu/| gradu|} = | gradu|−3Λβ

and kν = kβ × τ = −τ × rot τ = −| gradu|−4Λν , where Λβ
def
= gradu × grad | gradu|2/2,

Λν
def
= gradu×Λβ. The literal analogy to the IDOs of the group G leads to the assumption that

the vectors λ3 and λ4 in the IDOs A3 and A4 have the form λ3 = a3Λν and λ4 = a4Λβ, where
a3 and a4 are scalar functions. However, such λ3 and λ4 do not satisfy system (B∗). Its solutions
λ3 and λ4 by the formulas of Theorem 4 contain expressions derived from the vectors Λν and
Λβ by replacing the quantities | gradu|2 by J7 = | gradu|2/u2; such λ3 and λ4 satisfy (B∗), and
hence A3 and A4 are IDOs. The invariance of J5–J9, (J10)′, and J13–J17 follows from the fact
that Ai (i = 1, 2, 3, 4) A′3 are IDOs. The expression for A′3 follows from the formula for A3 and
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the identity [19, § 7] (a · [b × c]) = b(a · c) − c(a · b) for a = b = gradu, and c = gradJ7.
The invariance of J10 follows from the formula [20, Ch. 4, § 4] (a× b)2 = |a|2|b|2 − (a · b)2 for
a = gradu/n and b = grad J7/n.

Remark 1. Finding the DIs R = J11, ∆2u = J4, J20, and J21 and other DIs of Theorem 3
by solving the systems X

2
J = 0 and X

3
J = 0 is difficult due to their complexity. We find these

expressions as three-dimensional analogues of the DIs K = J11, ∆2u = J4, ∆ ln J7/n2, and
div {(J4/J7) gradu}/n2, respectively, and other DIs of the group G. Verifying that they satisfy
the system X

2
J = 0 and other systems is an easy (though laborious) task. The same is true for

IDOs.
Remark 2. In [12], the geometric meaning of the field S(τ ) = T was obtained as the sum

of three curvature vectors of three curves associated with the surface orthogonal to the field τ ;
for its Gaussian curvature, we have [21]: K = −divS(τ )/2.

Theorem 5. The scalar curvature R = J11 mentioned in the lemma and Theorem 3 is
expressed in terms of other DIs of the group G10 as R/4 = J21 − J20/2− J18.

Proof is obtained either by direct calculation of the right side of this formula in terms
of derivatives or (which is easier) from the identity S(τ ) = T of Theorem 3 (obtained
in [8]) by multiplying it by n and using the div operation, division by n3, and the formula
ln | gradu|2 = ln J7 + lnn2. This formula for R is a three-dimensional analogue of the formula
for K(x, y) in Theorem 1.

5. Conclusions
This study shows that complex systems of DEs that arise when searching for DIs and IDOs of
Lie groups admitted by DEs of mathematical physics can be solved using geometry (differential,
Riemannian), vector analysis, and the method of analogies. In this study, they were used to
find the DIs (and the relationships between them) and IDOs of the group G10 — an equivalence
group of the three-dimensional eikonal equation and other DEs.
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