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E-mail: Kujtim.Latifi@moffitt.org 
 
Abstract. We present our experience with training and validation of a commercially available 
deep learning algorithm for organs at risk(OAR) auto-contouring. Computed tomography(CTs) 
with OARs from a cohort of 213 head and neck(H&N) patients were used for training the deep 
learning model. A separate cohort of 85 CTs and structure sets was used for validation. All 
OARs (13) were contoured by a single physician. Metrics such as the DICE similarity 
coefficient (DSC), Jaccard similarity coefficient (JSC), and volumetric difference (VD) were 
used to analyze contouring variation. Mean DSC and JSC values ranged 0.48-0.89 and 0.32-
0.8, respectively, depending on OAR. A DSC value ≥0.7 indicated low inter-observer 
variability. In our study, all but one of the contours were above this threshold. DSC for the 
middle pharyngeal constrictor had the lowest value of all the contours. This may be due to the 
small volume of this structure. Qualitative assessment of auto-segmented structure samples 
confirmed the reliability of DSC by demonstrating the compatibility between the expert’s 
evaluation and DSC values. Overall, we found that deep learning auto contouring is a useful 
tool to speed up the process of contouring in radiotherapy treatment planning. 

1. Introduction 
Contouring of organs at risk (OARs) is a time-consuming part of radiotherapy treatment planning. 
There are many approaches to speed up this process. These range from atlas-based segmentation 
(ABS) algorithms, active contour model (ACM), machine learning, and others. ABS methods are often 
used and some software packages are commercially available; however, they are generally limited to 
certain OARs and local elastic registration is required for accurate results, which is time-consuming. 
[1-2] ACM delineates the outline of objects using energy constraint and image forces. Being a 
deformable model, ACM is frequently adopted in medical image processing; however, it is 
computationally intensive especially when the image size is large and accuracy demands aconvergence 
criteria. [3]  

 Machine learning techniques, deep learning in particular, have been rapidly growing in the last 
few years in many industries and are being adopted in radiotherapy for many tasks such as clinical 
outcome prediction, medical image analysis, dose-response modeling and image segmentation. [4-7] 
The main advantage of this technique is its ability to learn the most suitable representation of data for 
given tasks. In this paper, we present our experience with training and validation of a commercial deep 
learning automatic contouring software for H&N OARs.   

2. Materials and Methods 

2.1. Quantitative assessment 
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A commercial deep learning auto-segmentation software (DLCExpertTM, Mirada DBx., Mirada 
Medical Ltd.) was utilized. CTs and OAR contours from a cohort of 213 H&N patients were used for 
training the deep learning model. A separate cohort of 85 CTs and contours were used for validation. 
Patients with tilted head position were excluded. Thirteen most common and important OARs in H&N 
radiation treatment planning were considered in this study (Table 1). All OARs were contoured by a 
single physician and were used to generate the radiation treatment plans with which the patients were 
treated. In order to quantitatively evaluate the contours generated from the model against the expert’s 
contours, the following metrics were used; DICE similarity coefficient (DSC), 
 

𝐷𝐷𝐷𝐷𝐷𝐷 =
2(𝑉𝑉𝑔𝑔𝑔𝑔 ∩ 𝑉𝑉𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎)
𝑉𝑉𝑔𝑔𝑔𝑔 + 𝑉𝑉𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎

 

Jaccard similarity coefficient (JSC), 

𝐽𝐽𝐷𝐷𝐷𝐷 =
𝑉𝑉𝑔𝑔𝑔𝑔 ∩ 𝑉𝑉𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎
𝑉𝑉𝑔𝑔𝑔𝑔 ∪ 𝑉𝑉𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎

 

 
and volumetric difference (VD)  

𝑉𝑉𝐷𝐷 =
𝑉𝑉𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎 − 𝑉𝑉𝑔𝑔𝑔𝑔

𝑉𝑉𝑔𝑔𝑔𝑔
 

 
where 𝑉𝑉𝑔𝑔𝑔𝑔 and 𝑉𝑉𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎 are the volume of organs of ground truth and auto-segmented contour.  

  
A commercial software (StructSure, Standard Imaging Inc.) was also used to validate the contouring 
variation. The program gives score (0-100) based on the similarity of two contours by penalizing each 
missing and extra voxel as a function of distance from the primary contours with forgiveness threshold 
distances;  
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚𝑉𝑉𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷 
 

where A is a constant penalty, B is a linear penalty according to the distance, C is a base penalty for 
the exponential function, D is an exponential penalty rate, and d is distance. [8] 

2.2. Qualitative assessment 
A sample of 20 CTs was selected from the validation CT set. 256 automatically segmented structures 
were qualitatively evaluated by the single physician on a scale of 0-5; 0: ideal, exactly what the ground 
truth would be, 1: acceptable, no edits necessary, 2: too big, needs minor edits, 3: too small, needs 
minor edits, 4: not close enough to the ground truth, too big, 5: unacceptable (0-3: clinically useful, 4-
5: not clinically useful) (Table 2).  

3. Results 
Mean DSC values ranged from 0.48±0.14 for the middle pharyngeal constrictor to 0.89±0.03 for the 
cerebellum. Similarly, the JSC values ranged from 0.32±0.12 for the middle pharyngeal constrictor to 
0.80±0.05 for the cerebellum. VD values ranged from 0.02±0.29 for the right submandibular gland to 
17.17±59.40 for the middle pharyngeal constrictor (Table 1).  

For 20 CTs with 13 OARs, a total of 256 automatically generated contours were evaluated by a 
physician to determine if they were clinically applicable (Table 2). None of the structures were 
evaluated to be ideal or acceptable without some edits, but 98% of contours, 251 out of 256, were still 
considered clinically useful with minor modifications. Among the clinically useful cases, 242 
structures were bigger than the ground truth and the other 9 contours were smaller. Meanwhile, five 
automatically generated structures, 2% of all, were evaluated to be clinically unacceptable; one got a 
score of 4, much bigger than ground truth (Figure 1). 
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The contour graded as 4 was the brainstem (Table 3). When compared to the ground truth contour 
slice by slice, overall contour lines were posteriorly expanded and shifted with 2 and 4 extra slices at 
the top and bottom. It had a DSC value of 0.69, StructSure score of 0.00, and VD value of 0.80.  
 

Table 1. A comparison of DLC generated contours to the expert contours. 

 Vgt
 

(cc) 
Vauto 
(cc) 

VD 
(%) DSC JSC StructSure 

Spinal cord 16.32±4.33 17.76±4.17 0.13±0.28 0.78±0.08 0.64±0.10 76.2±25.3 
Parotid_R 26.80±9.40 32.47±10.1 0.24±0.22 0.79±0.06 0.66±0.07 88.0±5.9 
Parotid_L 27.56±8.94 30.65±9.83 0.13±0.20 0.81±0.06 0.68±0.08 89.7±4.4 

SPCa 8.92±2.55 9.78±2.23 0.13±0.23 0.61±0.07 0.44±0.07 60.4±21.6 
MPCb 1.81±0.68 3.27±1.41 17.17±59.40 0.48±0.14 0.32±0.12 28.6±32.5 
IPCc 8.38±2.48 8.85±2.86 0.06±0.20 0.74±0.09 0.60±0.10 76.3±23.6 

Larynx 19.88±7.08 20.32±6.20 0.04±0.19 0.82±0.12 0.71±0.13 86.7±15.7 
SMG_Rd 8.73±2.46 8.66±2.72 0.02±0.29 0.76±0.10 0.62±0.12 85.7±9.4 
SMG_Le 9.00±2.38 8.73±2.32 0.04±0.60 0.78±0.11 0.64±0.12 82.9±20.0 

Brainstem 27.57±3.04 37.37±4.15 0.37±0.17 0.79±0.04 0.65±0.05 63.9±21.7 
Mandible 57.48±12.45 73.10±16.57 0.27±0.10 0.86±0.04 0.75±0.05 69.7±30.2 

Cerebellum 125.92±14.19 137.47±12.96 0.10±0.12 0.89±0.03 0.80±0.05 85.3±9.8 
Oral cavity 211.55±45.23 233.99±44.90 0.13±0.23 0.84±0.07 0.73±0.10 65.4±22.7 

a superior pharyngeal constrictor 
b middle pharyngeal constrictor 
c inferior pharyngeal constrictor 
d right submandibular gland 
e left submandibular gland 

 

 

Table 2. Distribution of scores evaluated by a physician. 

Scale  count 
0 ideal 

clinically 
useful 

0 
1 acceptable, no edits necessary 0 
2 too big, needs minor edits 242 
3 too small, needs minor edits 9 

4 not close to ground truth, too big not 
clinically 

useful 

1 

5 Unacceptable 4 

 
Three of the lowest-rated structures were in the oral cavity. The oral cavity is an OAR with the largest 
volume in H&N cases with complex structures, thereby carries a larger element of risk of variation in 
contour. One of the three oral cavity contours had irregular shapes, with large missing (67.66cc) and 
extra (83.59cc) volume. VD was small, 0.07, but less important in this case as the VD formula only 
considers the quantitative difference between the volumes, not the spatial concordance. On the other 
hand, the StructSure score, which gives a penalty on the distance between each voxel, was 0.00. The 
other two had DSC>0.7 (0.81 and 0.80), but the StructSure scores were 32.03 and 49.96 (median 
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70.05) as one was missing 11 slices of contours (VD=-0.22) and the other had irregular shapes. The 
other lowest-rated contour was a left submandibular gland. In this case, the structure was adjacent to 
the target and DLC generated contour had 1 and 11 extra contoured slices at the top and bottom. 
Therefore Vauto was 5.7 times larger than the Vgt; VD=4.67. DSC value and StructSure score were 0.24 
and 0.00, respectively, which showed that the two contours were substantially different. 

Table 3. Details of not clinically useful DLC generated contours. 

Score Organ Vgt 
(cc) 

Vauto 
(cc) 

VD 
(%) 

Missing 
(cc) 

Extra 
(cc) DSC StructSure 

Score 
4 Brainstem 29.27 52.70 0.80 0.87 24.30 0.69 0.00 
5 SMG_L 2.12 12.01 4.67 4.67 0.43 0.24 0.00 
 Oral cavity 223.91 175.73 0.07 67.66 83.59 0.67 0.00 
 Oral cavity 298.66 284.13 -0.22 62.49 14.31 0.81 32.03 
 Oral cavity 223.91 239.84 -0.05 66.23 51.70 0.80 49.96 

 
In most of the structures, except for the pharyngeal constrictors, DSC values agreed well with the 
score given by the physician. Only two out of 197 contours were evaluated as clinically useful when 
DSC values were below 0.7 (0.68 and 0.62). However, DSC value ≤0.4 was generally considered as a 
large variation, therefore those two contours also required expert evaluation. Thus, qualitative 
assessment substantiated the reliability of DSC by demonstrating the compatibility between the 
expert’s evaluation and DSC values.  

 
 

Figure 1. Comparison between the ground truth and DLC generated 
contour of the oral cavity. Red, green and blue areas on the left figure 
represent extra, common and missing volume, respectively. (a) An 
example of a not clinically useful case (b) a clinically useful case  

4. Conclusions 
A DSC value ≥0.7 indicated good concurrence between automated segmentation and expert contours. 
[9] DSC for middle pharyngeal constrictor had the lowest value of all the contours. This may be 
because of the small volume of this structure. In the majority of cases, DSC showed good agreement 
with the expert’s judgment of the quality of the auto-segmented structures. In some cases of 
discordance, other metrics substantiated the qualitative evaluation as different metrics take different 

(a) 
 

(b) 
 



MMND ITRO 2020

Journal of Physics: Conference Series 1662 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1662/1/012017

5

factors into account. Due to the complexity of the appearance and shape of anatomical structures, 
auto-segmentation remains challenging. But overall, we found that deep learning auto-contouring was 
a useful tool to speed up the process of contouring in radiotherapy treatment planning.  
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