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Abstract. In recent years, the proposal of neural network has provided new idea for solving 
natural language processing, and at the same time, neural machine translation has become the 
frontier method of machine translation. In low-resource languages, due to the sparse bilingual 
data, the model needs more high-quality data, and the translation quality fails to achieve the 
desired effect. In this paper, experiments on neural network machine translation based on 
attention are conducted on Tibetan-Chinese language pairs, and transfer learning method 
combined with back translation method is used to alleviate the problem of insufficient Tibetan-
Chinese parallel corpus. Experimental results show that the proposed transfer learning combined 
with back translation method is simple and effective. Compared with traditional translation 
methods, the translation effect is significantly improved. From the analysis of translation, it can 
be seen that the citation of Tibetan-Chinese neural machine translation is smoother, which is 
greatly improved compared to the translation without back translation. At the same time, there 
are common deficiencies in neural machine translation such as inadequate translation and low 
translation loyalty. 

1.  Introduction 
Machine translation studies how to use computer to automatically translate between natural languages. 
Machine translation methods can be divided into rule-based machine translation, case-based machine 
translation, statistical machine translation and neural machine translation which are widely used at 
present. 

With the development of machine learning technology, neural machine translation based on deep 
learning is gradually emerging. Since 2014, it has gained obvious advantages in most tasks in just a few 
years[3]. In neural machine translation, word strings are represented as real vectors, that is distributed 
vectors. In this way, the translation process is not carried out on the discrete words and phrases, but on 
the real vector space, so the expression of word order has undergone essential changes. Compared with 
statistical machine translation, the advantage of neural machine translation is that it does not need 
Feature Engineering, and all information is automatically extracted from the original input by neural 
network. Moreover, compared with the continuous model, the method can provide more information for 
sentence representation. In addition, natural network storage devices are suitable for small applications. 
However, there are also problems in NMT. First of all, although it is separated from feature engineering, 
the structure of neural network needs to be designed manually. Even if the structure is well designed, 
the optimization of the system and the setting of super parameters still rely on a large number of 
experiments. Secondly, neural machine translation is lack of interpretability, and its process and human 
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cognition are quite different, and the degree of intervention through human prior knowledge is poor; 
Thirdly, neural machine translation relies heavily on data, and the scale and quality of data have great 
influence on performance. Especially in the case of data scarcity, it is challenging to fully train neural 
networks. 

Due to the problem of data sparsity, the related researches of Tibetan Chinese machine translation 
are mainly focused on statistical machine translation and Tibetan machine translation. On the whole, the 
research on Tibetan machine translation is lagging behind, and the application and actual effect of neural 
network in Tibetan language are rarely published. 

2.  Neural Machine Translation 
Neural machine translation is a new machine translation method proposed by kalchbrenner et al. [12], 
sutskever et al. [5] and Li. [13]. In neural machine translation, the process of sequence to sequence 
conversion can be realized by the encoder decoder framework, in which the encoder encodes the source 
language sequence and extracts the information in the source language for distributed representation, 
and then the decoder converts the information into another language expression [14]. In modeling, neural 
network is used to complete the direct translation from source language to target language, without the 
steps of word alignment, translation rule extraction and order adjustment. This section mainly introduces 
the transformer model based on self attention and back translation data enhancement technology. 

The traditional seq2seq model of neural network has some shortcomings: CNN can't directly process 
long sequence samples, RNN can't parallel computing. Although the seq2seq model completely based 
on CNN can be implemented in parallel, it takes up a lot of memory, and it is not easy to adjust 
parameters in large amount of data. In view of the shortcomings of the seq2seq model based on CNN 
and RNN, in June 2017, Google released a new machine learning framework transformer, which 
constructs encoders and decoders based on self attention, and builds a seq2seq model based on attention 
mechanism[11]. The RNN does not use the previous structure of CNN, or it does not retain any inherent 
structure of CNN[6]. The model can work in high parallel, and has a great improvement in task 
performance, parallel ability and easy training[15]. The performance of this model in machine 
translation and other language understanding tasks is far beyond the existing algorithms[7]. Its design 
is to process all the words in the sequence in parallel, at the same time, it can combine the context with 
the distant words with the help of self attention mechanism[16]. In each step, the information of each 
symbol (such as a word in a sentence) can communicate with all other symbols by means of self attention 
mechanism. The training speed of transformer is much faster than that of RNN, and its translation result 
is much better than that of RNN. The transformer framework has achieved the best translation 
performance. 
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Figure 1 transformer framework 

As shown in Figure 1, the transformer framework is still an encoder decoder structure in general, 
which is a completely attention based encoder decoder model. In a network block of the encoder, it is 
composed of a multi attention sub layer and a feedforward neural network sub layer, and N blocks are 
built in the encoder stack. Similar to the encoder, only one more multi attention layer is added to one 
network block of the decoder. In order to optimize the deep network better, the whole network uses 
residual connection and add norm[17]. 

First of all, multiple attention is used to connect the encoder to the decoder. K, V, q are the layer 
output of the encoder (where k = V) and the input of the multi attention in the decoder. In fact, just like 
the attention in the mainstream machine translation model, the decoder and encoder attention are used 
for translation alignment. Then, multiple self attention self attention is used in both encoder and decoder 
to learn the representation of text. Self attention is K= V= Q. for example, if you input a sentence, then 
every word in the sentence must be attached to all the words in the sentence. The purpose is to learn the 
word dependence within a sentence and capture the internal structure of the sentence. The difference of 
multi attention is that it calculates h times instead of once, which allows the model to learn relevant 
information in different representation subspaces. 

2.1.  data enhancement technology via back translation 
At present, neural network method has achieved good translation results in low resource machine 
translation[20]. However, in the face of language resources and lack of corpus size, there is not enough 
corpus for neural network training, so neural machine translation model is difficult to learn more useful 
information. Therefore, how to make full use of existing data to alleviate the problem of resource 
shortage has become an important research direction of neural machine translation. As the acquisition 
of monolingual data is easier and faster than that of bilingual data, this paper will combine the back 
translation data enhancement technology to improve the performance of the translation system. The 
process is as follows: 
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Figure 2 flow chart of back translation 

As shown in Figure 2, for example, in the training of Chinese English translation, there are some 
Chinese English parallel corpora and some unmarked English corpora. First, we train English translation 
with Chinese English parallel corpus, and then use en_ ZH translation system to get the Chinese 
translation of unlabeled English corpus, finally put these as ground truth, synthesize parallel data and 
apply it to training to achieve the effect of expanding corpus. 

2.2.  Tibetan Chinese neural machine translation under the condition of scarce resources 
At present, neural machine translation has made remarkable achievements in large-scale conditions, but 
in the use of scarce language resources, statistical machine translation can improve performance by 
using language models, while neural machine translation is difficult to effectively use the only corpus 
to complete the task. As a data-driven method, the performance of neural machine translation (NMT) is 
highly dependent on the size, quality and domain coverage of parallel corpora. Only when the training 
corpus reaches a certain scale, can NMT significantly surpass SMT. 

There is also a problem of insufficient corpus in Tibetan-Chinese machine translation. Different 
from Li et al. [13], the method in this paper not only uses English Chinese model parameter initialization, 
but also combines Tibetan Chinese material with reverse translation data enhancement [20] technology 
to carry out experimental research on Tibetan Chinese machine translation. When we train Tibetan 
Chinese translation, we have some Tibetan Chinese parallel corpus and some unmarked Chinese corpus. 
First, the Tibetan Chinese parallel corpus is used to train Chinese Tibetan translation, and then used 
ZH_TI translation system to get the Tibetan translation of unlabeled Chinese corpus, and finally put 
these as ground truth, synthesize parallel data and apply it to training to achieve the effect of expanding 
corpus. 

3.  Experiment And Analysis 

3.1.  Experimental data and parameters 
The parallel corpus used in this experiment is the Tibetan Chinese machine translation evaluation corpus 
of the 2011 machine translation Seminar (CWMT). The Tibetan Chinese corpus is mainly from the 
government field. The training data is 100000 sentences and the test data set is 650 sentences. 

The deep learning framework used in the experiment is pytoch. Compared with other deep learning 
frameworks, pytoch has great advantages in performance. Its architecture is more flexible and can 
complete training and Application on multiple platforms, which has been widely recognized and applied 
in the industry. 

The relevant parameter settings in this experiment are shown in Table 1. 

Table 1. Parameter settings 
parameter type Value 
Vocab size 100000 
Vector dim 512 
Hidden layer 1024 
Learning rate 0.1 
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Drop out 0.1 
Batch_size 4096 
optimizer Adam 

3.2.  Experimental Results Comparative 
This paper uses the baseline to develop and release the transformer neural machine translation system 
for Google [18], which is represented by "NMT (bi-text)". On the basis of transfer learning, we use the 
back translation method to express it as "NMT (bi-text + pseudo bilingual data)". 

In order to evaluate the translation model, the international machine translation evaluation script and 
insensitive Bleu value are used to evaluate the translation quality automatically. The experimental results 
are shown in Table 2. 

Table 2. BLEU values 
Model BLEU 

NMT(bi-text) 48.02 
BackTrans(bi-text+ 

pseudo bilingual data) 
50.10 

Through the analysis of the data in Table 2, it can be seen that the performance of the translation 
system after the fusion of the back translation method is greatly improved compared with the original 
NMT. It shows that the pseudo data created by the back translation data enhancement method is helpful 
to the training of the system and can make the machine translation show better performance. 

Due to the lack of Tibetan Chinese parallel corpus, corpus resources are the biggest obstacle to 
Tibetan Chinese machine translation. Although back translation data enhancement technology can 
effectively alleviate this problem, its translation performance has not achieved the expected effect. In 
the follow-up study, we will use other methods to improve the effect of Tibetan Chinese neural network 
machine translation under the condition of scarce resources, such as zero resource method, and study 
the application of this method in other languages. 

4.  Related Work 
Machine translation, namely automatic translation, is a process of transforming a natural language 
(source language) into another natural language (target language) by using a computer [1], which is one 
of the most important research directions in the field of natural language processing [2]. In recent years, 
with the great progress in the research of deep learning, neural ma chine translation based on deep 
learning has also made a breakthrough[4]. In terms of translation efficiency and translation quality, it 
has gradually surpassed the traditional statistical based machine translation method. 

In the research of machine translation, neural network machine translation is used to achieve the 
direct translation from the source language to the target language, which greatly improves the translation 
effect, and it is the forefront of machine translation research[8]. At present, there are relatively few 
research results on Tibetan machine translation. Nima Tashi [9] proposed a Chinese Tibetan machine 
translation technology and system based on neural network in 2014. In terms of Tibetan word 
segmentation, the system uses the Tibetan word segmentation method based on discriminant model to 
study the correlation between the Tibetan word segmentation results and the minimum word formation 
granularity[19]. Li Yachao [10] proposed the method of using transfer learning to solve the problem of 
the scarcity of Tibetan and Chinese materials, and proved through experiments that this method 
improved three Bleu values compared with phrase statistical machine translation method. These Tibetan 
and Chinese machine translation systems all use the translation technology based on neural network. 
However, due to the lack of Tibetan Chinese bilingual corpus, the translation effect has not been able to 
achieve the desired effect. In order to improve the effect of Tibetan Chinese neural machine translation, 
we will use the back translation method to make pseudo data to expand the corpus appropriately. 
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5.  Conclusions And Prospects 
This paper studies the application of neural network machine translation in Tibetan Chinese translation. 
The transfer learning method is used to transfer the parameters of the English Chinese neural network 
machine translation model to the Tibetan Chinese neural network machine translation model, and the 
back translation data enhancement technology is used to expand the corpus. This method significantly 
improves the effect of the baseline neural network machine translation system. 

Through the comparative analysis of the experiment, it shows that the successful application of back 
translation data enhancement technology in low resource neural machine translation can further improve 
the effect of machine translation. However, the results obtained in this paper are still unsatisfactory 
because the data set used in the training model is relatively small. In addition, the word vector dimension 
in the model, the number of training rounds, and the improvement of the model by means of fusion 
transfer learning may affect the final results. How to adjust the network structure to achieve the optimal 
effect of the model is a problem that needs to be further studied and solved. 
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