
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Enhancing the Security of Mobile Device
Management with Seccomp
To cite this article: Yingjiao Niu et al 2020 J. Phys.: Conf. Ser. 1646 012138

View the article online for updates and enhancements.

You may also like
Roadmap on electronic structure codes in
the exascale era
Vikram Gavini, Stefano Baroni, Volker
Blum et al.

-

3D printing processes in precise drug
delivery for personalized medicine
Haisheng Peng, Bo Han, Tianjian Tong et
al.

-

Detection of Android malicious
applications based on APIs
Xu Jiang, Baolei Mao and Jun Guan

-

This content was downloaded from IP address 18.222.96.135 on 15/05/2024 at 18:15

https://doi.org/10.1088/1742-6596/1646/1/012138
https://iopscience.iop.org/article/10.1088/1361-651X/acdf06
https://iopscience.iop.org/article/10.1088/1361-651X/acdf06
https://iopscience.iop.org/article/10.1088/1758-5090/ad3a14
https://iopscience.iop.org/article/10.1088/1758-5090/ad3a14
https://iopscience.iop.org/article/10.1088/1742-6596/1345/4/042049
https://iopscience.iop.org/article/10.1088/1742-6596/1345/4/042049
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuH7GYPOLQ1vN49F3bpDNBcnH1wtx9GDTeDmTe1tG0jWIDgEX9qNrrD3Sg1AzxTH7naO5_zvhyhKXt-fLpZk0LFflHJ6WSk6IMYdB-AuZgCiZqhwKbFRYQ9KEt4_d7YFGj4XkD9PLtJ8vinw-QQLFNhQNGzGRT2HNKFbmeGoXmFmVuIi3OuzP9JnjTu21VsP_PWmYO5FF24RqIlZSpCkVjRlfJyAGn4bSZdYLX0yHmHEJGQb7bvzvaXqkclsW6WRWCDUTNFdsR1HDa5KbBmcq0LLeqwJDNfpvMcBnScVkqVo0BQH_IWeJVEKn86gFkh-N0HehyT6eXMJTZWquEQR8Yuk-Qg9UYm&sig=Cg0ArKJSzMCkZmOJngO6&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

1

Enhancing the Security of Mobile Device Management with

Seccomp

Yingjiao Niu∗†‡, Yuewu Wang∗†, Shijie Jia∗†, Quan Zhou∗†, Lingguang Lei∗
†
,

Qionglu Zhang∗†‡ and Xinyi Zhao∗†‡

∗State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Building C3, No. 65, Xingshikou Road, Haidian

District, Beijing, China
†Data Assurance and Communication Security Research Center, Chinese Academy of

Sciences, Building C3, No. 65, Xingshikou Road, Haidian District, Beijing, China
‡School of Cyber Security, University of Chinese Academy of Sciences, No. 380,

Huaibei Village, Huaibei Town, Huairou District, Beijing, China

Email:{niuyingjiao,wangyuewu,jiashijie,zhouquan,leilingguang,zhangqionglu,zhaoxin

yi}@iie.ac.cn

Abstract. Mobile devices today have been increasingly used to store and process sensitive

information, and Mobile Device Management (MDM) solution is provided in Android systems

to manage the mobile devices. MDM solution enforces device policies through calling Device

Administration APIs provided in Android system. However, these APIs are usually

implemented in user space, thus make the system more vulnerable to be attacked. Potential

adversary may bypass these secure policies by breaking through the isolation between

processes. In this paper, we propose an approach based on the seccomp mechanism of Linux

kernel to enforce device management policies on Android. Seccomp can restrict the system

calls of Android process to enforce device management policies in a more secure way.

Experiments results demonstrate that our work may work well and incur negligible overhead.

1. Introduction

Mobile devices (e.g., smart phones and tablets) are increasingly ubiquitous nowadays due to their

portability and mobility. In particular, mobile devices have been widely utilized to operate corporate

emails and customer information in workplace[1], contributing to a Bring Your Own Device (BYOD)

trend[2] and thus leaving large amounts of sensitive personal/corporate data in these devices, which

may lead to a multitude of data security issues[3]. According to the Verizon Mobile Security Index

2019 report[4], one in three organizations in the US have been suffered a data breach in 2018, and

moreover, in 25% of companies, at least one mobile device has experienced a mobile cryptojacking

incident, a new kind of malicious code.

To raise the bar of the malicious attacks on the mobile devices in workplace, Google provides

Device Administration APIs[5] to carry out mobile device management (MDM) in enterprise

environments since Android 2.2. Device Administration APIs are the foundation of MDM system,

which allows the BYOD administrator to allow or restrict the device owners to access various

functions of the devices, such as Camera, Bluetooth, WIFI, etc[6][7]. MDM provides complete

lifecycle management for mobile devices from all the aspects of device registration, activation,

utilization, and elimination[8]. Thanks to the great convenience of MDM, it has received great

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

2

popularity. According to the Verified Market Research[9], the MDM market was valued at USD 3.37

billion in 2019 and is projected to reach USD 18.97 billion by 2027.

However, the realization scheme of the MDM would inevitably introduce security vulnerabilities to

the mobile devices. In Android, the user space is more vulnerable to attack compared with kernel

space. According to a report published by Google[10], the proportion of non-kernel bugs accounts for

3/5 of security vulnerabilities on Android devices. What's worse, the introduced vulnerabilities could

be exploited by attackers to conduct privilege escalation attacks. For example, CVE-2020-0105[11]

leverages a missing permission check in key_store_service.cpp to elevate privileges, allowing apps to

use keyguard-bound keys when the screen is locked. CVE-2020-0183[12] can be used to elevate

privileges because of an incomplete reset in BluetoothManagerService. Unfortunately, by analyzing

the source code of the Device Administration APIs, we found that the realization scheme of the MDM

(by calling the APIs provided by Android) truly lies in the user space (e.g., the function of disabling

camera is implemented by the permission check in the ''cameraService'', which is a native process and

lies in system library layer), which opens a door for the adversary to attack the mobile devices.

In this paper, we tackle the aforementioned limitations of MDM and propose a novel device

management scheme to enhance the security of MDM. Our proposed scheme is based on the seccomp

mechanism, which is introduced since Android O[13] to restrict the system calls of Android process.

The principle of the seccomp mechanism is that when a seccomp filter is assigned to a process, the

seccomp would specify the available system calls for the process, and the invocations of the systems

calls, which are not on the filter list, will be forbidden. Inspired by the principle of the seccomp, in this

paper, we utilize the availability of the system calls to realize the management of the device.

Specifically, to restrict a device function (e.g., Camera, Bluetooth, WIFI), we would remove a certain

key system calls from the available system call list of the corresponding process, which is responsible

for communicating with the lower-level kernel driver. Then we can add the removed system calls

again to access the restricted device function.

To enhance the security of MDM by utilizing seccomp, when we would like to restrict a certain

device function (e.g., Camera, Bluetooth, WIFI), we need to solve the following problems: 1)

determining the target process which is used to interact with the kernel driver; 2) selecting the key

system calls which are indispensable for the target process; 3) configuring the seccomp filters for the

target process. For the first problem, in Android, as all the applications send the requests to the

corresponding driver through HAL service (e.g., Camera, Bluetooth and WIFI), which sits between the

driver and the higher-level Android framework. Therefore, we select the HAL service as the target

process. For the second problem, as the HAL service communicates with the kernel driver by taking

advantage of the Binder IPC calls[14], and in the Binder mechanism, the ioctl system call is used to

send and receive binder messages. Therefore, we select the ioctl system call as the key system call.

Note that, as the HAL service runs in its own process, thus if we remove the ioctl system call from the

available system call list, it will not affect the normal operation of the whole system. For the third

problem, we introduce a kernel module to achieve the cross-process seccomp filter configuration.

Moreover, we provide a friendly notification to the device owner when a certain device function may

be prohibited due to the device policy, then the device owner could determine whether to accept the

prohibition or not.

We implement a prototype and verify the effectiveness of our proposed method on different models

of mobile phones with different system versions. Specifically, we take the Camera, Bluetooth and

WIFI as example. The experimental results show that our method could provide a practical way to

enhance the security of the MDM. In addition, our method introduces negligible performance

overhead.

The remainder of this paper is organized as follows. Section 2 introduces the necessary background

knowledge. Section 3 details the MDM policy enforcement. Following is the design and

implementation of our proposed scheme in section 4. Section 5 discusses the evaluation of our system.

Finally, we conclude the paper in Section 6

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

3

2. Background

In this section, we first provide necessary background on Android MDM solutions and then introduce

the seccomp mechanism, which is highly related to the design and implementation of our method.

2.1. Android MDM

Android 2.2 introduced Device Administration APIs for developers to enforce a system wide security

policy and to dynamically adapt the features based on the device’s current security level. Mobile

Device Management (MDM) solutions are provided in the way of the Device Policy Manager API,

which allows the developers to control functions like password complexity, lockout timing, remote

wipe and remote lock. Device Policy Manager exposes part of the functionality of the underlying

system service, namely, DevicePolicyManagerService. Same with most system services,

DevicePolicyManagerService is started by system_server process and runs within it as the system user.

Therefore, DevicePolicyManagerService could execute almost all privileged actions, which makes it

possible for users to enable and disable the device administrators on demand[15]. The security policies

have different granularity and can be enforced either for the current user or for all users on a device.

Some policies are not enforced by the system at all, as the system may only notify the declaring

administration application, which is then responsible for taking an appropriate action.

2.2. Seccomp Mechanism

Seccomp filter provides a mean for a process to specify a filter for the incoming system calls. The

filter is expressed as a Berkeley Packet Filter (BPF) program, as with socket filters[16]. Seccomp has

three working modes, i.e., seccomp-disabled, seccomp-strict and seccomp-filter[17]. In the disabled

mode, the process is not under the protection of the seccomp mechanism. In the strict mode, only four

system calls could be invoked, i.e., read, write, _exit and sigreturn. In the filter mode, the available

system calls can be defined by constructing a BPF program[18] (i.e., a seccomp filter). The seccomp

filter works like the socket filter, except that it checks the system call invoked by a process, including

the system call number and system call arguments. A BPF program is composed of BPF instructions.

Each instruction is 64 bits, with a fixed format, which includes the actual filter code, the jump offset

when the filter codes return true, the jump offset when false is returned, and a generic value[19].

In Android kernel, the list of available system calls is represented as a seccomp_filter data structure.

Each seccomp_filter structure contains a sock_filter member, which is an array consisting of the BPF

instructions. Each process has a task_struct structure that contains a seccomp structure, in which the

mode flag defines the seccomp state of the process. If the process is protected by the seccomp

mechanism, the filter field of the seccomp structure points to the first seccomp_filter structure. It is

possible for a process to be attached with multiple seccomp_filters, and all seccomp_filters are

organized in a one-way linked list. Each seccomp_filter structure contains a sock_filter member, which

is an array consisting of the BPF instructions.

3. MDM Policy Enforcement

In this section, we discuss how the camera policy is implemented and enforced in the MDM as an

example. The analyzed code is based on Android 10.0.0_r39.

The main class for managing policies enforced on a device is DevicePolicyManagerService, which

provides setCameraDisabled API for device administrators to disable all the cameras on the device.

When a device administrator calls the setCameraDisabled API, the propagation of camera restriction

policy travels from DevicePolicyManagerService to UserManagerService and then finally to

AppOpsService. Specifically, DevicePolicyManagerService pushes the camera restriction to

UserManager via addUserRestriction interface. The AppOpsService rules define a mapping from

UID/package name to the allowed operations and offer an interface to the application to retrieve the

current configuration for checking whether the application is allowed to perform the corresponding

operation.

In the following we will introduce how the application is prohibited from using the camera when it

is disabled through the device policy.

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

4

In the Android system, camera service provides the functions of using the camera device (e.g.,

taking a picture, recording a video). The workflow of the disabled camera policy enforcement is

shown in Figure 1, which consists of 8 steps. Getting an instance of the Camera object is the first step

and the recommended way is to use the Camera.open() method which is encapsulated by the

framework layer. The initial entry in the framework layer is CameraManager's openCamera method,

which finally calls the openCameraDeviceUserAsync method. Subsequently, the

openCameraDeviceUserAsync method calls the lower-level native code native_setup(), which is

implemented in android_hardware_Camera.cpp to obtain access to the camera service.

Framework
Layer

Application

Runtime
Layer

CameraManager.java openCamera

openCameraForUid

openCameraDeviceUserAsync

android_hardware_Camera.cpp

android_hardware_Camera_native_setup

connect

System Library
Layer

Camera Client Camera Service

BpCameraService
BnCameraService

CameraService.cpp

connectDevice

connectHelper

CameraDeviceClient.cpp

initialize

initializeImpl

Camera2ClientBase.cpp

startWatchingMode

startOpNoThrow
startOperation

initialize

initializeImpl

connect CONNECT

startCameraOps

Figure 1. The workflow of the disabled camera policy enforcement.

To communicate with the camera service, the camera client in the system library layer first obtains

the camera service instance by getService(), which establishes the connection between the client and

the service by the binder. The client side gets camera from BpCameraService::connect, which sends a

CONNECT command to Bncameraservice. When the Bncameraservice receives the CONNECT

command, it calls connectDevice in the CameraService.cpp to obtain the remote device (step 5).

Actually it is the connectHelper method that is invoked to implement the connection logic. Step 6 and

Step 7 generate and initialize a specific CameraDeviceClient instance. In the InitializeImpl method of

Camera2ClientBase.cpp, the startCameraOps method will be called to perform permission check

operations. The startCameraOps method mainly completes the following tasks. Firstly, the

AppOpsManager::startWatchingMode class, which is provided by AppOpsService, is used to monitor

for changes to the operating mode for the given operation. Secondly, startOperation class is called to

detect whether the given application could perform the operation.

From the above analysis, we can conclude that the caller's permission is checked in the camera

service, which is a native process. As any application can run native codes such like C/C++ and

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

5

bypass the permission check, thus the current MDM solution can not prevent the attacks of accessing

resources by native code directly, (e.g., transplantation attack[20]).

4. Design and Implementation
To achieve precise device management based on the seccomp mechanism, we restrict the available

system calls of the target process, which is used to connect to the kernel driver, in this way, we can

prevent the applications from accessing the underlying resource of the system.

The architecture of the system is illustrated in Figure 2, which consists of three modules, i.e., the

Policy Configuration, the Policy Enforcement and the Failure Indication. The policy configuration

module is responsible for receiving the device management strategy. The policy enforcement module

provides seccomp-based management to enforce device security policy, which includes BPF

constructor submodule and seccomp filter loader submodule. The failure indication module is

designed to display reminder messages to users if an operation is restricted due to the device policy. In

the following, we will introduce the implementation of the policy enforcement module and the failure

indication module in detail.

Policy
Configuration

Policy Enforcement

Framework & Applications

External Libraries & Runtime

Camera Audio

HAL

Bluetooth GPS ...

Linux Kernel

Camera
Driver

Audio
Driver

Bluetooth
Driver

GPS
Driver

...

BPF
Constructor

Seccomp Filter
Loader

MDM

x

x

User Space

Kernel Space

Failure
Indication

Figure 2. The architecture.

4.1. Policy Enforcement

4.1.1. BPF constructor. BPF constructor is implemented in the user space. Since the Android system

doesn't provide an interface to achieve the cross-process seccomp filter configuration, we use two

macros (i.e., BPF_JUMP and BPF_STMT) to convert the available system call list to the BPF filter

instructions in the user level process.

As aforementioned before, the seccomp structure is a member of the task_struct, if we would like

to change the seccomp policy of the process, we should first get the pointer of the task_struct. As all

HAL services are registered and launched by the init process when the system starts, thus we can use

the pidof interface provided by the kernel to obtain the pid of the target service with the packagename

as a parameter. Then the pid_task() function is called to get the task_struct of the process.

4.1.2. Seccomp filter loader. To load the seccomp filter for the target HAL service, we need first

convert the BPF filter built in the user space to the kernel data structure. As some codes of the BPF

filter program are different from the codes in seccomp filter, thus we use sk_ck_filter() and

seccomp_check_filter() in the kernel module to transform the BPF filter program into a seccomp BPF

filter program.

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

6

We take a list of excluding ioctl system call as an example to illustrate the procedure of

constructing a seccomp filter. The BPF instructions in the second subfigure of figure 3 are the output

of the BPF constructor. As figure 3 shows, after sk_ck_filter() and seccomp_check_filter() are called in

the third and fourth subfigure of figure 3, then the code flag will be checked. The number of 29 in the

second subfigure of figure 3 represents the system call number of ioctl.

remove ioctl

 code=32, jt=0,jf=0,k=0

 code=21, jt=0,jf=1,k=29

 code=6, jt=0,jf=0,k=0

 code=6, jt=0,jf=0,k=2147418112

 code=23, jt=0,jf=0,k=0

 code=42, jt=0,jf=1,k=29

 code=1, jt=0,jf=0,k=0

 code=1, jt=0,jf=0,k=2147418112

 code=61, jt=0,jf=0,k=0

 code=42, jt=0,jf=1,k=29

 code=1, jt=0,jf=0,k=0

 code=1, jt=0,jf=0,k=2147418112

Figure 3. A sample of the seccomp_filter structure constructing procedure.

After the seccomp_filter structure is created in the kernel, the seccomp filter loader modifies the

filter pointer, making it point to the newly constructed seccomp_filter structure. Since the HAL

services are not protected by the seccomp mechanism during initialization, the working mode of the

seccomp in these processes is seccomp-disabled. In order to start the seccomp policy of the target

process, we should set the working mode to seccomp-filter, more specifically, setting the ''mode'' flag

to ''SECCOMP_MODE_FILTER'' and setting ''task_struct->thread_info->flags'' to ''TIF_SECCOMP''.

4.2. Failure Indication

The failure indication module provides users with prompt information when an operation is prohibited

by the device policy. And the user can decide whether to accept the prohibition. Compared with the

existing solutions, which prevents all the applications from accessing the system resources, our

solution can achieve more refined management of the device.

We make use of socket for cross-process communication to implement message push and result

feedback. The client side is responsible for intercepting and capturing the disabled system call

information. For each system call invoked during the execution of the process, the system first calls

the secure_computing function to check whether the system call is in the list of the available system

calls. The returned value of -1 in the secure_computing would result in the process being killed

immediately. In order to display a prompt message to the user and let the user decide whether to

perform the operation, if the returned value is -1, the process that invoked the system call will not be

immediately terminated, and then sends a request to the server. After the server accepts the request, it

displays the analysis information to the user, and feeds the user's request back to the client side. At last,

the client side decides whether to allow the execution of the forbidden system call based on the

returned result.

5. Evaluation

In this section, we make an evaluation for our prototype system in the aspects of effectiveness and

overall performance. As the principle of managing different functions in the mobile phone are almost

the same, thus we take Camera, Bluetooth and WIFI as examples for evaluation.

5.1. Effectiveness

To verify the practicability and effectiveness of our method, we implement our method on different

mobile phones shipped with different Android system versions in the real world. Specifically, we

choose 4 different phones and 3 different Android system versions. The result is illustrated in Table 1.

We can see that our method could manage the devices functions on all the evaluation platforms.

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

7

Table 1. Result on different Android system versions and models.

Android system Version Model
Result

Camere Bluetooth WIFI

8.1.0
Nexus 5X   

Pixel 2   

9.0.0

Pixel 2   

Pixel 3   

Pixel 3a   

10.0.0
Pixel 3   

Pixel 3a   

5.2. Overall Performance

We evaluate the performance impacts of our method on the running systems. The performance

consumption is mainly brought by the following two operations, i.e., dynamically enforcing the

seccomp filter for the target process according the device management strategy, and displaying prompt

information for users. To evaluate the time consuming on the above two aspects, we run our method

on the selected evaluation platforms for 10 times, and the average results are shown in Table 2 and

Table 3 respectively. We can see that the time of configuring the seccomp filter is less than 4ms and

the time of displaying information is about 2s.

Table 2. Time consuming on configuring the seccomp filter.

Android system Version Model
Result (ms)

Camere Bluetooth WIFI

8.1.0
Nexus 5X 2.3 2.2 1.9

Pixel 2 2.7 2.3 1.9

9.0.0

Pixel 2 2.4 2.7 2.4

Pixel 3 2.1 2.5 2.8

Pixel 3a 2.1 3.3 2.4

10.0.0
Pixel 3 2.1 2.4 2.6

Pixel 3a 2.4 3.5 2.9

Table 3. Time consuming on information display.

Android system Version Model Result (s)

8.1.0
Nexus 5X 1.99

Pixel 2 1.72

9.0.0

Pixel 2 1.93

Pixel 3 1.63

Pixel 3a 1.20

10.0.0
Pixel 3 1.18

Pixel 3a 1.36

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

8

6. Conclusions

In this paper, we introduce a method to enhance the security of the Mobile Device Management on

Android. Unlike the existing approaches, our scheme is based on the seccomp mechanism to restrict

the system calls in the kernel space, which avoids the common vulnerabilities of the schemes in the

user space. Furthermore, we provide a friendly restriction notification to the device owner, achieving

fine-grained device management. The experimental evaluation confirms the efficiency of our proposed

method.

7. References

[1] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, “Droidforce: Enforcing complex, data-centric,

systemwide policies in android,” in Ninth International Conference on Availability, Reliability

and Security, ARES 2014, Fribourg, Switzerland, September 8-12, 2014, 2014, pp. 40–49.

[2] O. Zungur, G. Suarez-Tangil, G. Stringhini, and M. Egele, “Borderpatrol: Securing BYOD

using fine-grained contextual information,” in 49th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019, 2019,

pp. 460–472.

[3] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically enforcing enterprise policy

on android devices,” in 22nd Annual Network and Distributed System Security Symposium,

NDSS 2015, San Diego, California, USA, February 8-11, 2015, 2015.

[4] Verizon, “Mobile security index 2019 executive summary,”

https://enterprise.verizon.com/resources/reports/mobile-security-index/2019/executive-

summary/, 2019.

[5] “Device administration,” https://developer.android.com/guide/topics/admin/device-admin,

2019.

[6] OPENSYS, “Android android-10.0.0_r39,” http://aosp.opersys.com/xref/android-

10.0.0_r39/xref/frameworks/base/core/java/android/provider/Settings.java#9583,2020.

[7] X. Cai, X. Gu, Y. Wang, Q. Zhou, and Z. Cao, “Enforcing ACL access control on android

platform,” in Information Security - 20th International Conference, ISC 2017, Ho Chi Minh

City, Vietnam, November 22-24, 2017, Proceedings, 2017, pp. 366–383.

[8] N. Group, “Android mdm,” https://www.nccgroup.com/us/about-us/newsroom-and-

events/blog/2012/march/android-mdm.-part-i-build-up/, 2012.

[9] VERIFIED, “Global mobile device management market size by type, by deployment type, by

geographic scope and forecast,” https://www.verifiedmarketresearch.com/product/mobile-

device-management-market/, 2019.

[10] T. Spring, “What’s new in android 8.0 oreo security,” https://threatpost.com/whats-new-in-

android-8-0-oreo-security/128061/, 2017.

[11] “Cve-2020-0105 detail,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0105,

2020.

[12] “Cve-2020-0183 detail,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0183,

2020.

[13] P. Lawrence, “Seccomp filter in android o,” https://android-

developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html, 2017.

[14] F. Tcymbal, “Project treble. what makes android 8 different?”

https://events19.linuxfoundation.org/wp-content/uploads/2017/11/Project-Treble.-What-Makes-

Android-8-Different_-Fedor-Tcymbal-Mera-Software-Services.pdf, 2018.

[15] N. Elenkov, “Android security internals: An in-depth guide to android’s security architecture,”

pp. 217–218, 2014..

[16] “Seccomp bpf,” https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html.

[17] L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang, and Q. Li, “SPEAKER: split-phase

execution of application containers,” in Detection of Intrusions and Malware, and Vulnerability

Assessment - 14th International Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017,

Proceedings, 2017, pp. 230–251.

https://enterprise.verizon.com/resources/reports/mobile-security-index/2019/executive-summary/
https://enterprise.verizon.com/resources/reports/mobile-security-index/2019/executive-summary/
https://developer.android.com/guide/topics/admin/device-admin
http://aosp.opersys.com/xref/android-
https://www.nccgroup.com/us/about-us/newsroom-and-
https://threatpost.com/whats-new-in-android-8-0-oreo-security/128061/
https://threatpost.com/whats-new-in-android-8-0-oreo-security/128061/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0183
https://android-/
https://events19/

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012138

IOP Publishing

doi:10.1088/1742-6596/1646/1/012138

9

[18] J. Schulist, D. Borkmann, and A. Starovoitov, “Linux socket fltering aka berkeley packet flter

(bpf),” https://www.kernel.org/doc/Documentation/networking/filter.txt, 2019.

[19] PLUMgrid, “Bpf - in-kernel virtual machine,”

https://events.static.linuxfound.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf,

2015.

[20] Z. Zhang, P. Liu, J. Xiang, J. Jing, and L. Lei, “How your phone camera can be used to

stealthily spy on you: Transplantation attacks against android camera service,” in Proceedings

of the 5th ACM Conference on Data and Application Security and Privacy, CODASPY 2015,

San Antonio, TX, USA, March 2-4, 2015, 2015, pp. 99–110.

