
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Design of Operating Platform for Intelligent
Charging Pile Based on Micro-service
To cite this article: Xueyuan Pan and Shejiao Hu 2020 J. Phys.: Conf. Ser. 1646 012128

 

View the article online for updates and enhancements.

You may also like
Abnormal Detection System Design of
Charging Pile Based on Machine Learning
Yanjie Li, Xiaoyu Ji, Dongxiao Jiang et al.

-

An Optimal Design of Electric Vehicle
Charging Piles Based on Time-space
Sequence
Huifeng Xu and Jing Cai

-

Research on the Development Status,
Strategic Choice and Business Model of
China’s Charging Pile Industry
Qingkun Tan, Peng Wu, Tang Wei et al.

-

This content was downloaded from IP address 18.221.111.22 on 22/05/2024 at 02:41

https://doi.org/10.1088/1742-6596/1646/1/012128
https://iopscience.iop.org/article/10.1088/1755-1315/772/1/012058
https://iopscience.iop.org/article/10.1088/1755-1315/772/1/012058
https://iopscience.iop.org/article/10.1088/1755-1315/170/4/042027
https://iopscience.iop.org/article/10.1088/1755-1315/170/4/042027
https://iopscience.iop.org/article/10.1088/1755-1315/170/4/042027
https://iopscience.iop.org/article/10.1088/1742-6596/1637/1/012083
https://iopscience.iop.org/article/10.1088/1742-6596/1637/1/012083
https://iopscience.iop.org/article/10.1088/1742-6596/1637/1/012083
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstQZlkmhct9G4Ehno71_PJUciayiJBKoHCbWzWfsUazDD13pr8-xFLlq4az38kBp4i29GGsgNnk9y_DWseIKYhh8Pr_C548xTB-QoDI_56X67L1FrO4AmnKZNxBtLlmSBaH8qZJBy6-U378yHjcALTxNcVWkNZFFd23lt-DFPq6zrkd2_PpSAjLU1sej4q36WCSCk_wqlE4hitnzAePpSqi1NbodELr0LS9brY-JfqQy65dNhvPUsh4j-D0Ahko6zftqr4t5OryUedKMeBAU5NPZWgvRhtDj7w43WU1QpoSW3DM2yMMY3kTFxpamN12J3nbjJPetZTyXRb65vCjlEmaI2zSKIM7&sig=Cg0ArKJSzCo_N5ybx72-&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1646/1/012128

1

Design of Operating Platform for Intelligent Charging Pile 

Based on Micro-service 

Xueyuan Pan and Shejiao Hu 

Information and Communication Engineering, Hefei University of Technology, 

School of Computer and Information, roomA1001. 

Email: 1761309363@qq.com 

Abstract. The introduction of "new energy vehicle charging pile" as one of the contents of 

"new infrastructure" indicates that the field of charging pile is facing a new round of 

technological innovation, deployment difficulties and other shortcomings are no longer suitable 

for its charging operation of the growing business needs. In view of this, a design method 

based on microservice architecture is proposed. The open source distributed framework Spring 

Cloud and its components are used to realize the mechanism of service registration discovery, 

load balancing, service fault tolerance and so on. The reformed operation system has a clear 

structure, stable operation, timely monitoring and processing of abnormal information such as 

charging pile fault, and has a broad application prospect. 

1. Introduction 

The 2020 meeting of the Politburo made it clear that new forms of infrastructure, including new 

energy vehicle charging piles, would need to be stepped up to provide new impetus to economic 

growth. "New infrastructure" drive the field of charging piles in all aspects, not only to promote the 

construction of high-quality field stations and public piles, but also to operators and charging 

operation platform put forward more intelligent, humane requirements. 

Most of the traditional charging platforms adopt single architecture or service-oriented architecture, 

which centralizes all functional modules in the same application and adopts unified programming 

language. With the continuous expansion of the business scope of charging pile, the overall 

complexity of the system continues to increase, the shortcomings of the traditional architecture 

gradually exposed. Poor scalability, small changes to a function that affect the deployment of the 

entire application, database data volume and confusion, low resource utilization, and other issues not 

only affect the user experience, it is not conducive to data monitoring, fault analysis and control of the 

whole charging process. Therefore, the construction of a new charging service platform is an urgent 

problem to be solved at this stage. 

This paper presents a new charging pile operation service platform based on micro-service 

architecture and a continuous deployment of software system based on Docker container technology, 

which has the advantages of high availability, high scalability and rapid replacement. Following the 

trend of new software engineering concepts such as agile development, DevOps, continuous delivery, 

etc. , charging studs are becoming "smart, professional, and contextual" as cloud computing and Intel 

Virtualization Technology mature. 

 

 

 

mailto:1761309363@qq.com


ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1646/1/012128

2

2. Microservice Architecture and Docker 

2.1. Microservice 

Fowler and other computer scientists came up with the concept of microservice. The core idea of 

microservice is to segment services around the Organization of business functions, and each service 

can be developed and implemented in the appropriate technology and language according to its own 

functional requirements, independent operation and process; microservices tend to reinforce terminals 

and weak channels, and are committed to forming highly cohesive and low-coupling service units, 

with distinct boundaries between services and a REST-style lightweight messaging mechanism, 

cooperate with each other to complete the function of the whole system. The advantages of 

micro-service architecture are: low development cost, good fault tolerance, simple and quick 

deployment. 

The current mainstream distributed service frameworks include Spring Cloud and Dubbo. In 

contrast to Dubbo, the Spring Cloud framework and its core components cover every aspect of the 

functionality of microservices, including service governance, and the community is active. Therefore, 

Spring Cloud is chosen as the micro-service technology to realize the design of the whole system 

function. 

2.2. Spring Cloud 

Spring Cloud is an ordered set of Spring Boot-based frameworks and components. It provides many 

tools for developers to quickly build a common pattern of distributed systems, such as service 

registration discovery, load balancing, link tracing and so on. The complete Spring Cloud framework 

is shown in Figure 1 below: 

 

 

Figure 1. Spring Cloud overall framework 



ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1646/1/012128

3

(1) Spring Cloud Eureka implements service governance. The core of service governance consists 

of service provider, service consumer and registry. The Eureka Server component defines the service 

registry, and the microservice to be registered connects to Eureka Server via the Eureka Client 

component to complete the registration. 

(2) Spring Cloud Ribbon for load balancing. Spring Cloud Ribbon, based on Netflix Ribbon, 

mainly provides client software load balancing Algorithm and service call function to achieve high 

system availability. 

(3) Hystrix implements fault-tolerant mechanism and provides service degradation, service fusing 

and near real-time monitoring functions to ensure pre-processing of error cases to avoid cascading 

failures and improve the flexibility of distributed systems. 

(4) Spring Cloud Config is a distributed configuration center that provides configuration services 

through the server side for multiple configuration centers, dynamically updates configuration during 

runtime, and uses Git by default to store configuration files. 

(5) the Spring Cloud Gateway Component implements the routing Gateway. Shield server 

implementation logic, provide a unified user interface. Its internal integration of the fuse, 

authentication, flow control and other functions. 

(6) Spring Cloud Zipkin for distributed link tracking. By collecting and tracking the request data in 

the system, the operator can monitor the time spent by the request in each micro-service more quickly. 

2.3. Docker 

Because the virtual machine has many shortcomings such as resource occupation, redundant steps, and 

time-consuming, Linux virtualization technology came into being. Docker is a virtualization 

technology that solves operating environment and configuration problems and helps continuous 

integration and overall release. Compared with traditional virtual machines, it has the following 

advantages: 

(1) Efficient and lightweight. A container is different from a virtual machine running a complete set 

of operating systems, and only requires the library and configuration environment required for 

software to run. 

(2) Rapid deployment and delivery. Write the dockfile file to build the Docker image and deliver it 

to the warehouse, pull the image in another environment and instantiate it. Build once, run anywhere. 

(3) Simplify system operation and maintenance. The development-test-production environment is 

integrated, and the inconsistency of the underlying infrastructure and operating system will not cause 

any impact, which greatly reduces the workload of operation and maintenance personnel. 

(4) Improve the efficiency of computing resource utilization. Docker is kernel-level virtualization. 

It can run hundreds of containers on a physical machine, greatly improving the CPU and memory 

utilization of physical servers. 

In the actual deployment process, the configuration environment required by the sub-application is 

converted into instructions and written into the dockerfile file to run the file to generate the image. 

Write Docker Compose.yml file to arrange service scheduling and run mirroring.Based on this, the 

combination of microservices and Docker technology is used to achieve rapid deployment and 

continuous integration. 

3. System Requirement Analysis and Overall Structure 

The intelligent charging pile operation platform is based on the design and implementation of the 

microservice architecture proposed in this paper.Adopt front-end and back-end separation mode, and 

use json for data interaction. The client includes a mobile WeChat applet and a browser. It adopts a 

restful-style HTTP request-response mechanism, and comprehensively considers user experience, 

system performance, operation management and other factors to achieve a more intelligent, 

personalized, and operating platform for the charging pile system . Figure 2 is a diagram of the overall 

system architecture.The smart charging pile operating platform shall have the following functions: 

For ordinary users of charging pile: 



ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1646/1/012128

4

(1) users log in with small programs on the mobile side, and the system provides them with cloud 

card query, charging station search and navigation, start-stop and reservation charging pile, wechat 

charging payment and other functions through a unified authentication platform. 

(2) the charging pile is pushed to the client in time when the charging process is abnormal 

 

 

Figure 2. System architecture 



ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1646/1/012128

5

For charging pile operators, the system should perform the following functions: 

(1) charging pile management: After charging pile is connected to the system platform, the 

equipment is authorized to collect, store, analyze and monitor its status data. The operator can 

remotely control the start and stop of the charging posts. To provide four ways to start: automatic 

filling, according to the time start, according to the power start, according to the amount of start. 

(2) cloud card management: One user for one card. The operating platform provides a free e-card 

for the first time users who log in to a small program. Users can charge, deduct and cancel the card. 

When the card balance is less than a certain value, the operating platform should be able to remind 

users to recharge before the next use. 

(3) charging station management: The map on the first page of the operation platform distributes 

the charging stations in various districts and the usage of charging piles in the stations, including the 

number of idle/working posts, the total number of alarm calls for charging posts, the number of orders 

for completed transactions and the amount of money. 

(4) Order System: The operator may inquire the historical order and the pending order detailed 

information. According to the order number, charging post number, charging gun muzzle number and 

so on for accurate inquiry. 

(5) billing system: The operating platform sets the charging rates according to the pricing strategy 

for Peak Pinggu District Electricity consumption at different times of the day and the charging charges 

required for charging posts in different districts. 

(6) monitoring system: Two dimensions, business logic and physical machine resource parameters, 

comprehensively monitor the service operation of the system platform. Real-time monitoring of the 

charging post in operation, including the current SOC, the value of charging voltage and current, BMS 

information and so on. Once the value exceeds the safe range, stop charging the stake immediately to 

warn. Warning information will be sent to the field personnel by SMS, email and other means and 

Wechat to notify users of the end of the order. Through the link tracking to accurately locate the Error 

Service, through the query log to get the details of the error information and timely inform the field 

technical personnel for processing. 

4. Concrete Realization 

4.1. Service Registration and Discovery 

Spring Cloud realizes service registration and discovery through Eureka Server and Eureka Client, 

where Eureka Client separates service provider and service consumer. The Eureka Server as registry is 

implemented in three steps: Create a Module to place on pom. XML, add a configuration file to your 

application. XML, create the startup class and note the@EnableEurekaServer annotation. The Eureka 

Client implementation differs from the Eureka Server implementation in that it adds 

the@EnableEurekaClient annotation to the service consumer when creating startup classes. 

Using client discovery mechanism, service consumers directly invoke service providers, simple 

architecture, no additional costs. At the same time, in order to ensure the high availability of Eureka, 

Eureka registry cluster is constructed, and the service list data of each registry is shared synchronously 

to realize the load balance and fault tolerance of service governance. 

4.2. Spring Cloud Gateway 

The Spring Cloud Gateway infrastructure uses a high-performance reactor-mode communication 

framework, and therefore replaces Zuul in this design. It provides routing and forwarding and 

implements the role of the filter chain gateway. The overall workflow is for the client to send a request 

to the Spring Cloud Gateway, which is routed to the handler mapping in the Gateway (the match 

condition is called predicate) , and then to the web handler if the match is successful, the handler 

finishes by sending the request through a series of filter chains to the actual business execution unit 

and returns the result.Spring Cloud Gateway configuration in the YML file, add 

the@EnableEurekaClient annotation to the primary startup class. 

 



ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1646/1/012128

6

4.3. Load Balancing 

Spring Cloud Ribbon is in-process client soft-load balancing for controlling HTTP requests, which is 

used in conjunction with the RSET TEMPLATE to implement the rest access service. According to 

the list of callable services provided by Eureka Server, Ribbon selects the calling instance to realize 

the local RPC remote service call based on the load balancing algorithm. Taking into account the 

actual use of charging pile operation platform, this paper adopts the available filterrule load balancing 

Algorithm, the core idea is to filter out the failure cases first, and then select the cases with a small 

number of concurrency. 

4.4. Service Reliability Assurance 

The Spring Cloud Hystrix component exists to prevent service avalanches in distributed systems. Its 

core functions are as follows: 

(1) service degradation. When the downstream business stops working, the upstream business 

should be demoted to keep the core business running normally. Configuration via@HystrixCommand. 

(2) service fuse. When a service fails to be accessed multiple times, the fuse is turned on and a 

health check is sent to see if the connection can be restored. 

(3) service restriction. The self-protection mechanism of the service adopts many flow-limiting 

strategies, such as discarding the redundant requests or rejecting the service which produces a large 

number of requests, in order to prevent the service from overloading in a short time. 

(4) visual surveillance. Visual data monitoring is declared using the@Hystrix DashBoard 

with@Spring Boot Actuator and via Hystrix. The stream node gets the details of the monitoring 

requests and presents them to the operators in real time in the form of statistical charts. 

The internal invocation relationship in microservice is complicated, the Spring Cloud Zipkin 

component is used to locate and trace the problem, the@EnablezipkinServer declaration is used to 

start the Zipkinserver, and the log analysis component e (ElasticSearch) l (Logstash) k (Kibana) is 

used to search for the problem and show it to the operators.Using redis cache, the intelligent charging 

post platform designed in this paper can monitor memory value, data flow, MySQL database and disk 

space and connection number. The monitoring strategy for the data collected during the charging 

process of the charging post is to deploy an index collector to query the important data indexes in real 

time, draw the monitoring interface and give an alarm when the data exceeds the threshold value. 

Based on the above monitoring measures, ensure the smooth and safe operation of charging pile 

service. 

5. Analysis of Test Results 

5.1. Experimental Environment 

The software environment installed in this lab is shown in Table 1. 

Table 1. Experiment software environment 
  

name version 

Docker 19.03.05 

OS Centos7.0 

Spring Cloud Alibaba 2.1.0 

Java 27.9 

Spring Boot 2.2.2 

Maven 3.5 

5.2. Performance Comparison 

The stress testing tool Apache Jmeter is used to evaluate the performance of this system and the 

traditional single application system. Under the premise of high concurrency, the same URL is 

requested,set the number of concurrent to 1000. The comparison of network indicators is shown in the 



ICNISC 2020

Journal of Physics: Conference Series 1646 (2020) 012128

IOP Publishing

doi:10.1088/1742-6596/1646/1/012128

7

following Table 2. From the data in Table 2, it can be concluded that the performance of the smart 

charging pile operating system based on microservice is greatly improved. 

Table 2. A Comparison of network indicators under the two architectures 

Index Monolithic architecture Microservice 

architecture 

concurrency 1000 1000 

Time for per 

request(ms) 

1.6754 0.2364 

Request nums/s 734.54 2999.48 

Transfer rate 221.47received 593.77received 

6. Concluding Remarks 

This paper designs a new smart charging pile operating platform based on the microservice 

architecture. Compared with the traditional single application architecture, its system has high 

availability and high scalability. The combination of SpringCloud and Docker container technology 

solves the complex deployment problems, which is beneficial to System maintenance and replacement. 

Therefore, in today's rapid development of the field of new energy charging piles, this system has 

good promotion value and significance. 

7. References 

[1] Long Xinzheng,Peng Yiming and Li Ruomiao 2017.Information service platform based on 

microservices framework.Journal of SouthEast University J.47 48-52 

[2]  Li Qing and Hu Shejiao 2019.Electric Vehicle Intelligent Charging System Based on 

NB-IOT.Measurement and Control Technology J.38 53-57 

[3] Wu Xia and AI Fangju 2020.Crowdfunding system based on microservices architecture.Journal 

of Hubei University J.42 103-8 

[4]  Ouyang Rongbin,Wang Qianyi and Long Xinzheng 2016.A data service framework based on 

micro-services.Journal of Huazhong University of Science and Technology J.44 126-130 

[5] Zhang Jing,Huang Xiaofeng and Li ChunYang 2017.Design and Implementation of  

Microservice Architecture. Csa J .26 259-262 

[6]  Zhao Yu 2020. Multi-Language Micro-Service Platform Based on ServiceComb.Csa J 

 29 84-91 

[7] Xiao Yao and Zhu Zhixiang 2019.Design and Implementation of a Monitoring System Based on 

Docker.Computer&Degital Engineering J. 47 2919-25 

[8]  Liu Shuyang,Zhang Manyi and Cao Qiang 2018.Design and Implementation of a Docker 

dynamic scheduling algorithm.Computer Engineering&Science J. 40 2112-19 

[9] Wu Huayao and Deng Wenjun 2020.Research Progess on the Development of 

Microservices.Journal of Computer Research and Development J. 57 525-541  

[10]  Li Chunyang,Liu Di and Cui Wei 2017.Unified application development platform based on 

micro-service architecture .Computer System &Applications J .26 43-48 

[11]  Huang Qiqi,Xiang Qian,Cheng Maoshang and Lv Zhijun 2020.Warehouse Management and 

Control System Based on Microservices. Journal of Donghua University J .46 83-90 


