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Abstract. In recent years, the operation of power grid is under great pressure due to more and 
more distributed resources. This paper establishes three kinds of load models, namely the 
electric water heater(EWH), the electric vehicle(EV) and the energy storage(ES). The response 
cost, speed, capacity and duration are taken as the four characteristic elements to cluster the 
demand side loads. According to the scenario characteristics, the factor weights under different 
scenarios are determined. Furthermore, the particle swarm optimization (PSO) algorithm 
utilized to optimize the scheduling of demand-side resources selected by K-medoids clustering 
algorithm. Simulation results indicate that, by taking advantage of the complementarity of the 
time-domain and functional characteristics of multiple loads, the consumption needs of 
different scenarios can be satisfied. 

1. Introduction 
With the continuous acceleration of urbanization in China, the phenomenon of continuous and rapid 
growth of elastic loads, such as energy storages, electric vehicles and air-conditioners, is very 
prominent[1-2]. More and more distributed resources are constantly connected to the grid, so that the 
load side is beginning to be equipped with power characteristics[3-5]. It is increasingly difficult to 
balance supply and demand of power grid. Thus a more efficient regulation mechanism is necessary 
for power balance.  

The research on demand response in foreign countries is not only limited to the implementation 
strategy, but also involved in the field of application design. Reference [6] proposes a predictive 
control scheme of the automatic demand response mechanism, which mainly takes the distributed 
resources connected to the power grid as the objects, supporting the large-scale implementation of 
demand response projects. Reference [7] proposes a demand response framework, which can be 
applied to the home LAN, as the hardware architecture connecting the Home Management System 
(HMS) and the device interface unit, to realize the home demand response function.  

Demand response research in China starts relatively late. Reference [8] investigates the demand 
response behavior of some typical clients in a province. Through analysis of the survey, it is concluded 
that demand response behavior is mainly influenced by the characteristics of enterprise production, 
related incentives and prices. Reference [9] puts forward a refined model of thermodynamic 
controllable loads in the residential side. Effects of electricity price on the residential loads have been 
analyzed in detail. Reference [10] establishes an EV economic scheduling model based on demand 



ICETAC 2020

Journal of Physics: Conference Series 1639 (2020) 012060

IOP Publishing

doi:10.1088/1742-6596/1639/1/012060

2

response, and realizes the purpose of transferring EV charging load through the optimization of EV 
charging price. 

The practice and theory of demand response is rich in foreign countries, while domestic demand 
response is just beginning to develop. There is still a lack of research on the dispatch strategy for 
multiple loads. In this paper, the load models of EWH, EV and ES are constructed at first. Then a 
multi-scenario optimization scheduling strategy is put forward. Simulation results illustrate that, the 
proposed strategy is an ideal method for the load dispatch. 

2. Load model construction 

2.1. Electric Water Heater 

2.1.1. Real-time reactive power calculating 
The real-time reactive power of EWH can be calculated as follows: 

 ( )22 cosQ S UI φ= −   (1) 

 S UI=   (2) 

Where U is the voltage, I is the current, and cosφ is the factor. 

2.1.2.  Response capacity and time calculating 
1） In the standby state 

The response capacity DRP  is served as  

 =DR X YP P P−   (3) 

Which means the water heater changes its operation state from X to Y.  
Accordingly, the calculating formation of the response time DRT  is  

 ( )= water set real water
DR

Y

c Vol T TT
P

ρ× × − ×   (4) 

Where waterc  is the specific heat capacity of water; waterρ  is the density of water;Vol  is the volume 
of the water heater; setT  and realT  are the given and real temperature respectively. 

2） In the service state 
The response capacity DRP  is similar to that in the standby state, while the response time DRT  is 

calculated as 

 0
( ) ( )

endT

water set real water water out out in water t

DR
Y

c Vol T T c Q T T d
T

P

ρ ρ× × − × − × × − × ×
=


  (5) 

Where the temperature of EWH is constant when someone takes a bath. 

2.2. Electric Vehicle 

2.2.1. Real-time reactive power calculating 
The real-time reactive power of EV can be calculated as in Equation (1). 

2.2.2. Response capacity and time calculating 
1） Charging scheduling 
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The response capacity DRP  is served as  

 =DR X YP P P−   (6) 

Which means EV changes its operation state from X to Y. 
Accordingly, the calculating formation of the response time DRT  is 

 
1 ) ,

=
1 ) ,

Y X Y
DR

X X Y

Q SOC P P P
T

Q SOC P P P
− >

 − <

（

（
  (7) 

2） Discharging scheduling 
The response capacity DRP  in the charging scheduling is the same as Equation (1).  
Similar to Equation (7), the response time DRT  in the discharging scheduling is as in  

 
) ,

=
) ,

low Y X Y
DR

low X X Y

Q SOC SOC P P P
T

Q SOC SOC P P P
− >

 − <

（

（
  (8) 

2.3. Energy Storage 

2.3.1. Real-time reactive power calculating 
The real-time reactive power of ES can be calculated as in Equation (1). 

2.3.2. Response capacity and time calculating 
1） Charging scheduling 

The response capacity DRP  is served as  

 
0 cos (Decreasing Situation)
0 cos (Increasing Situation)

DR N

DR N

P UI S
P S UI

φ
φ

≤ ≤ +
 ≤ ≤ −

  (9) 

Where NS  is the rated power of the battery. 
Accordingly, the calculating formation of the response time DRT  is 

 max

1 ) , (Charging after decreasing capacity)
( )

1 )= , (Charging after decreasing capacity)

1 ) (Increasing situation)
( )

DR
DR ch

dch
DR DR

DR

DR ch

SOC C SOH P UI
UI P q

SOC DOD C SOH q
T P UI

P UI
SOC C SOH

UI P q

 − × × ≤ − ×
 − + × × × ≥ −

− × ×
+ ×

（

（

（





  (10) 

2） Discharging scheduling 
Different from Equation (9), the response capacity DRP  in the discharging situation is served as 

 
0 cos (Decreasing Situation)
0 cos (Increasing Situation)

DR N

DR N

P S UI
P UI S

φ
φ

≤ ≤ −
 ≤ ≤ +

                                    (11) 

Accordingly, the calculating formation of the response time DRT  is 
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1 ) (Increasing situation)
( )
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DR ch

DR DR
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dch
DR

DR

SOC C SOH
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SOC C SOHT P UI
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  (12) 

3. Multi-scenario optimization scheduling 

3.1. Multi-scenario characteristic element analysis 
There are primary considerations in different scenarios, while other elements are also important 
components of the strategy in specific cases. In order to quickly deal with different scenario 
characteristics and form a specific strategy scheme, it is necessary to match different characteristic 
element and scenarios. Then different weight schemes and demand response strategies are formed.  
 

The scenario 
target layer

The characteristic 
element layer

The membership 
selection layer

Emergency Load 
COntrol(ELC)

Clean Energy  
EliminatIon(CLE)

Peak Load 
Shifting(PLS)

Response Cost (P)

Response Speed(S) 

Response Capacity(C) 

Response Duration(T) 

Weight combination 
of ELC

Weight combination 
of CLE

Weight combination 
of PLS

1 1 1 1, , ,P S C T

2 2 2 2, , ,P S C T

3 3 3 3, , ,P S C T
 

Figure 1. Schematic diagram of characteristic elements analysis. 
 
There are four factors taken into consideration in this strategy, namely response cost, response 

speed, response capacity and response duration. The average value is taken as the benchmark, then the 
ratio of an element to the average value is calculated as the weight of the specific element.  

The scenarios of peak load shifting, emergency load control and clean energy consumption are 
identified with a, b and c respectively. Set response cost, response speed, response capacity and 
response duration with P, S, C, T to describe the average of the four elements under each scenario. aP , 

aS , aC , and aT  represent the mean under the peak load shifting scenario, and so on. xp , xs , xc  and 
xt  represent the actual value of the x-th load. n  is the total number of loads, and m  is the number of 

scenarios.  
The calculation process is explained with an emergency load control scenario. 
• Calculate the average of an element in an emergency load control scenario. 

 
n

b x
x

P p n=    (13) 

• Calculate the average of an element under all scenarios. 

 / /a b c
m

P P m=    (14) 

• Calculate the factor ratio Q of the emergency load control scenario relative to all scenarios. 

 bP bQ P P=   (15) 

• The ratio of other elements in the emergency load control scenario can be obtained by the 
same method.  
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  (16) 
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m
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C

Q
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= =



  (17) 

 
/ /

n

x
b x

bT
a b c

m

t n
T

Q
T T m

= =



  (18) 

• Comparing the factor ratios of bPQ , bSQ , bCQ  and bTQ , the maximum value is taken as the 
primary consideration of the scenario. 

• The same is true for other scenarios. 

3.2. Demand-side resource clustering analysis 
The Grasshopper optimization algorithm is taken for the short-term prediction. Based on historical 
data accumulation, the data of the cost, speed, capacity and duration in the expected response are 
predicted for each scenario element. Then, the demand side resources are clustered by K-medoids 
algorithm. Selecting Euclidean distance as a cluster similarity indicator, part of load data clustering 
process is as follows. 

• Initialize the cluster center. The load data set SD   is composed of n  eigenvectors, represented 
as { }1 2, , ,s nD D D D=  . Randomly K  vectors are selected as the initial cluster centers 

{ }1 2, , ,C c c cnC C C C=  . 
• Cluster division. All load eigenvectors are divided to each cluster center according to the 

nearest Euclidean distance. The distance ED  between iD  and ckC  is calculated as 

 ( )2

1
t t

T

i ck
t

ED D C
=

= −   (19) 

Where T  is the characteristic vector dimension of the time-series load. 
• Updating the cluster center. In various clusters, the sum of distances of each load eigenvector 

to other data vectors of the current cluster are calculated according to Equation (19), and the distance 
and the minimum load data vector are selected as the new cluster center. 

 
,

1
=

i j

J

D
j

SD ED
=
   (20) 

Where 
,i jDED  is the distance of iD  and jD , J  represents  the number of eigenvector for the cluster 

iD , and SD  is the sum of the distance from iD  to all vectors in the current cluster. 
In this section, multiple types of elastic loads are taken into consideration. As users have different 

utilization frequency and dependence on the three types of loads, these loads can be set for reasonable 
response levels according to their own power consumption rules and preferences. Three colors are 
used to indicate the order of response, while green, yellow and red load groups respond in turn. 

In this DR policy, the aggregator needs to determine the response order of the devices in the same 
color group based on the weighted factor E , which is arranged from small to large. 

 (1 )E A Bα α= + −   (21) 
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Where A  is the times of scheduling loads, α  is the weight coefficient, and B  is the status value 
for different elastic load devices. A  is to be calculated as  

 

, ,

, ,

, ,

, ,

,

,

,

,

L now L set

L

L now L target

L now L target

L now L total

L total

TE TE
L WH

TE

EN EN
A L EV

TI TI

EN EN
L ES

EN

 −
 ∀ ∈

Δ


−
= ∀ ∈

−


−
∀ ∈



  (22) 

Where ,L nowTE  and ,L setTE  are the current and set temperatures of the load L  respectively; LTEΔ  is 
the temperature demand range the load L ; ,L nowEN  and ,L targetEN  are the current and target electricity 
of the load L  respectively; ,L nowTI  and ,L targetTI  are the current and target travelling time of the load 
L  respectively; ,L nowEN  and ,L totalEN  are the current and total capacity of the load L  respectively.  

The elastic loads governed by the aggregator respond in order of the green, yellow and red group. 
For the peak load shifting scenario, loads with a smaller E  value in the same group are given a 
priority to respond.  

 
START 

Set response level

DR control 
target received

Dispatch the next 
color group

Dispatch by E value 

Achieve the 
response goal

All groups are 
dispatched

The color group
  is dispatched

END

YES

YES YES

NO

NO

NO

 

 

1 ( )iE t

2 ( )iE t

( )i
jE t

1( )i
jE t+

( )
y

i
NE t

1 ( )iE t

2 ( )iE t

( )i
jE t

1( )i
jE t+

( )
r

i
NE t

yL L∀ ∈

1 ( )iE t

2 ( )iE t

( )i
jE t

( )
g

i
NE t

1( )i
jE t+

gL L∀ ∈

min max 1,     ,    ( ) ( )i i
set j jT T T t t E t E t+≤ ≤ ≤ ≥

...

...

...

...

...

...

rL L∀ ∈

 
Figure 2. Process of multiple loads 

dispatch based on grouping. 
 Figure 3. The execution sequence of 

multiple loads dispatch. 
 

It is assumed that within the scope of the aggregator, the red user group includes rN  elastic load, 
while the yellow and green user groups include yN  and gN  elastic loads respectively. The execution 
order of regulation by E  is shown in figure 3.  

The first layer in the above figure is the color group of the elastic load. The middle layer is the load 
control sequence within each color group. The bottom layer is the control constraint for multi types of 
elastic load. ( )i

jE t  represents the weighted coefficient value of the j -th load that belongs to the i -th 
aggregator at the t -time. rL , gL  and yL  are respectively the elastic load sets of the red, green and 
yellow group. minT  and maxT  respectively indicate the upper and lower limits of the temperature 
controlled load dead zone. sett  is the time limit for EV. 
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3.3. Multi-scenario demand side resource regulation strategy construction 
To further illustrate demand-side resource regulation strategies suitable for multiple scenarios, it is 
necessary to analyze characteristic elements in different scenarios before load scheduling. Based on 
different scenarios, the non-characteristic elements are divided into characteristic target elements and 
constraint elements. Furthermore, the PSO multi-objective algorithm is used to optimize the 
scheduling of demand-side resources selected by clustering[11]. The specific process of the demand 
side resource scheduling strategy is shown in the figure. 

Take the emergency load control scenario as an example. Through the collection, analysis and 
processing of historical data, suppose that the characteristic affiliation of the emergency load control 
scenario has been determined to be the response speed, while the response capacity and cost are 
characteristic target elements and the response duration is the characteristic constraint element. Firstly, 
the demand side resources are clustered according to the response speed, so that the fastest response 
load group is met for requirements of the emergency load control scenario. Then, with the response 
cost and capacity as objective functions and the response time as constraints, the PSO multi-objective 
optimization algorithm is used to obtain the non-inferior solution set of load group satisfying the 
requirements.  

 
The scenario situational awareness

Selection of the scenario feature membership 

Load group 
clustering

Load Group 1

Load Group 2

Load Group n

……

Divide other eigenvalues into the target  and constraint 
eigenvalues according to the scenario requirements

Load group 
response 

sequences

The reaponse sequence of Load Group 1

The reaponse sequence of Load Group 2

……

The reaponse sequence of Load Group n

Implementation of the response strategy

Coordinated switching between scenarios and strategies

Number of loads

Number of loads

 
Figure 4. Demand-side resource scheduling flow chart. 

 
When scheduling demand-side resources, the constraint eigenvalues of the scenario are used to 

cluster the demand-side resources, so as to obtain load groups satisfying the requirements of different 
scenarios. In order to further satisfy the scheduling order of the demand side resource, the priority of 
the demand side resource is determined by the target eigenvalues of different scenarios.  

 max max max
, 1 1 2 2 3 3 4 4

max min max min max min

i i i i
x i

e s

p p s s c c t
M k k k k

p p s s c c t t
α α α α

       − − −
= + + +       − − − −       

  (23) 

Where 1k , 2k , 3k  and 4k  are Booleans, which indicate the eigenvalue type; ip , is , ic  and it  
indicate the eigenvalues of the i -th load itself; maxp  and minp  are the maximum and minimum 
response cost in the load group; maxs  and mins  are the maximum and minimum response speed in the 
load group; maxc  and minc  are the maximum and minimum response capacity in the load group; et  and 
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st  are the  start and end time of scheduling; 1α , 2α , 3α and 4α  represent the weight of various 
eigenvalues in different scenarios, while =1α .  

The values of ,x iM  in the load group are compared to form the response sequence, as shown in 
figure 5. Different proportional coefficients correspond to different strategies. The response strategy 
library is established with different regulatory sequences in the load groups.  

Scheduling sequence of load groups 

,1xM

,2xM

,3xM

,x nM


Scheduling sequence 
of m

ultiple loads

,1xM

,2xM

,3xM

,x nM


Scheduling sequence 
of m

ultiple loads
Prioritized load groups Subprioritized load groups

 
Figure 5. Schematic diagram of scheduling sequence. 

4. Case study 

4.1. Case introduction 
In view of the demand-side resource scheduling strategy for multi-scenarios proposed in the previous 
section, the PSO multi-objective optimization algorithm is utilized for simulation to verify the validity 
of the proposed strategy in this section. Firstly, it is necessary to set the algorithm parameters, 
including the population size M , the dimension N , the iterative step N  and other information. 
Secondly, the position x  and velocity v  of the particles have to be initialized. Then the individual 
fitness is calculated according to the fitness formula. Furthermore, the PSO update module updates the 
individual optimal particle according to the new particle location. Finally, the non-inferior solution set 
update module screenings non-inferior solutions according to the new particle dominance relationship. 
The position and velocity update formulas are shown as below. 

 
1

1 1 2 2

1

( ) ( )k k k k k k
id gd

k k k

v wv c r p x c r p x

x x v

+

+

 = + − + −


= +
  (24) 

Where w  is the inertia factor to readjust the global and local seeking performance; 1c  and 2c  are 
constants and usually set to 2, but not necessarily 2; 1r  and 2r  are random numbers on the interval 
[0,1]. 

In this section, three typical loads of EWHs, EVs and ESs are simulated in matlab2017 to verify the 
proposed strategy above.  

 
Table 1. Simulation parameter setting 

Load Type Number The Optimal Range of The Load State Charge/Discharge Power（W） 

EWH 400 22℃~30℃ 1000~5000 

EV 200 Full 4000 

ES 300 —— 3000 
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4.2. Analysis of the scheduling effect of elastic loads 
Figure 6 shows the corresponding contrast of the effect before and after demand response. It can be 
seen that the load joint scheduling curve coincides completely with the elimination target curve, while 
all three kinds of loads have been involved in regulation. But when a single type of load is invoked, 
such as EWHs or EVs, the combined adjustment effect is not achieved. This is due to the time-domain 
and functional characteristics of EWHs or EVs. EWH will be forced to charge when it is below 22℃, 
and will be forced to disconnect when it is above 30℃。EVs are constrained by the arrival and 
departure time. On the other hand, while the remaining stay time of EVs is less than the charging time, 
EVs have to be forced charging to ensure that EVs reach the desired state when leaving. These 
characteristics of EWH and EV will make it difficult to reach or far exceed the target amount of 
consumption in some period. However, a high level of matched consumption can be achieved by 
taking advantage of the complementarity of time-domain characteristics and functional characteristics 
of multiple types of loads. 

Lo
ad

/W

Time/min

The to tal target curve
The to tal response curve
The  response curve of EWHs
The response curve of EVs

 
Figure 6. Results of elastic loads scheduling. 

4.3. Analysis of state changes in the scheduling process of multiple loads 
The temperature changes of 400 EWHs in a day is illustrated in Figure7. EWHs fluctuates 
continuously between 22℃ and 30℃. During 200~300min, numbers of EWHs with high temperature 
have to be powered off, while EVs are charging centrally with a high level of load consumption. 
During 700~800min, only part of EWHs with high temperature turn off due to little amount of demand 
response requirement. Figure 8 shows the changes in the charged state of 200 EVs. Due to the long 
charging time and short residence time of EVs, a large number of EVs are charged centrally within 
200~400min. The changes in the charged state of 300 ESs are indicated in Figure 9. In the early stage, 
the load demand is much larger than the target amount, which requires ESs to discharge. In the later 
stage, the charging load demand is small, so ESs are required to carry out charging operation to 
achieve the goal of matching the final load consumption with the target consumption. 
  

Time/min

Te
m

pe
ra

tu
re

/℃

 
Figure 7. The temperature changes of EWHs within a day. 
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Time/min

EV
 s

ta
te

 

 

Time/min

ES
 st

at
e

 
Figure 8. Charging curves of EVs.  Figure 9. The state curves of ESs within a day. 

4.4. Analysis of demand-side resource scheduling 
Figure 10 shows the number of loads among demand-side resources that can be dispatched in 590-620 
minutes in a day. These three types of elastic loads can be seen as scheduled ones, such as EWH 
whose water temperature is less than 30℃ and higher than 22℃, EV whose charged state is less than 
the expected state during the stay，ES with charged state between 0 and 1.  
 

595 600 605 610 615 620
0

50

100

150

200

250

300

350

400

Number o f E WHs 
Number o f Schedu lable EWHs
Number o f E Vs 
Number o f Schedu lable EVs
Number o f E Ss 
Number o f Schedu lable ESs

Time/min

N
um

be
r

 
Figure 10. Demand side resource scheduling situation for local periods. 

5. Conclusion 
In this paper, models of EWH, EV and ES are constructed respectively. The response characteristics of 
various loads are taken into consideration in each model. In order to satisfy the load scheduling 
requirements under different scenarios, the four characteristic indicators are established to characterize 
each scenario. K-medoids algorithm is utilized to cluster the demand side resources. Then the target 
eigenvalues of different scenarios are applied to determine the priority of the demand side resources. 
By adjusting the proportional coefficient of eigenvalues, the response strategy library is established 
with different regulatory sequences in the load groups. The results show that, it is difficult to match 
the target load curve with the actual load curve in a single type of load scheduling, while a high level 
of matched consumption can be achieved by taking advantage of all three kinds of loads.  
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