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Abstract. Transfer learning is that a machine learning model learns knowledge from more than 

one domain, and it is applied to the context of small sample size. Some of approaches concentrate 
on the correlation determination among all domains while some pay more attention on 

knowledge transfer among all domains. In this paper, on the basic of SVM with hinge loss, a 

new regularized transfer learning deep network with a specific regularization is proposed, in 

which a deep network learns high level representation with respect to the given samples. And a 

part of parameters in SVM are shared such that the similarity of data distribution can be well 

captured. Besides, a modified regularized SVM is exploited such that the gradient based method 

is feasible, which yields a parallel implementation of the proposed method. After that, in the 

experiment part, the comparison of our approach with state-of-the-art approaches manifests the 

competitive performance and the feasibility in classification.  

Keywords. Transfer learning; deep networks; parallelization. 

1. Introduction 

Classification algorithms are used in variety of areas, including images classification [1] and text 

categorization [2]. These classification methods are based on the assumption that all of the training data 

and test data are drawn independently from identically distribution [1]. The number of training samples 
is sufficient for us to construct a predictive classifier. However, it is worth noting that this assumption 

may not be feasible in applications. For example, the training samples may be not sufficient enough to 

construct a classifier or the existing training data are outdated [3]. The reasons behind these cases 
probably include the follow three folds. First, annotating data is usually an expensive labor process, and 

experts are not willing to annotate all images [1]. Secondly, it is extremely costly to obtain sufficient 

training samples, such as medical image analysis [4]. Thirdly, it is unrealistic for us to obtain sufficient 

training samples, like visual object tracking [5]. 
To address this problem, people have proposed a kind of methods, called transfer learning [1, 3]. 

These methods require training data is drawn from multiple domains, including target domain and 

related source domains. It is noteworthy that the source domain data is relative to the target domain data. 
The target domain data is small size. These methods exploit the training data from source domains to 

assist to construct the task learning in the target domain. For example, in Ref. [2], a novel transfer 

learning framework called TrAdaBoost has been presented, which extends Adaboost and TrAdaBoost 
and allows users to utilize a small amount of newly labeled data to leverage the old data to construct a 

high-quality classification model for the new data. Besides, some other transfer learning methods 

straddles both multi-task [6] and transfer learning, which is referred as multi-task transfer learning [7, 

8]. In Ref. [8], Zheng et al. have proposed a multi-task-based transfer learning method with dictionary 
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learning. In multi-task learning, people care about the performance of each task, while in multi-task 

transfer learning, people care about the result of task learning in the target domain [7, 8]. In addition, 

some deep network model-based transfer learning methods are also studied, such as fully convolutional 
networks (FCN) [9], weakly-shared deep transfer networks (weakly-shared DTN) [10] and Learning 

structure and strength of CNN filters (SSF-CNN) [11].  

In this paper, motivated by the multi-task transfer learning methods [9, 10], we propose a deep 
regularized transfer learning method named Dratle to solve the problem of training deep network with 

small sample sizes. In the proposed Dratle method, we construct a support vector machine (SVM) model 

for each task with respect to each domain. These SVMs are embedded in multi-task framework such 

that the source domain data can assist to construct the predictive SVM in the target domain. In our 
approach, the SVM is improved to make the SVM and the deep network can be simultaneous optimized. 

Besides, a regularization term is constructed for the deep network in order that the similarity of target 

data distribution and source data distribution can be well captured. The basic contributions of the paper 
can be summarized as follows: 

(1) We build a revised SVM for transfer learning such that the SVM model can be optimized by 

gradient-based method. Moreover, the SVM model and deep network can be optimized simultaneously.  
(2) We propose a regularization for deep network and shared parameter for the SVM such that the 

relationship between the source domain and the target domain can be well determined. 

(3) We conduct experiments to investigate the performance of our proposed Dratle method. And the 

comparison of Dratle with existing approaches manifests the feasibility and the competitive performance 
in classification. 

2. Related Work 

2.1. Multi-task Transfer Learning 
Multi-task transfer learning is that the data is generated from multiple domains, including source 

domains and target domain. For the existing multi-task transfer learning methods, we can summarize 

them into two groups, including the non-deep network-related methods and the deep network-related 

methods.  
In non-deep network-related methods, people modify the shadow models for the transfer learning 

setting, including the logistic regression-based method [7, 12] and the SVM-based method [8], Bayesian 

method [12]. In Ref. [7], Saha et. al. proposed a multi-task transfer learning (MTTL) method to augment 
the data from the source domain to assist the classification task in the target domain. In Ref. [8], Zheng 

et. al. proposed a multi-task-based transfer learning with dictionary learning (DMTTL). In DMTTL 

method, the dictionary learning model is exploited to learn a discriminative sparse code to enhance the 
classification accuracy.  

The deep network-related methods embed the deep network into the multi-task transfer learning 

framework. For example, in Ref. [13], Kandemir et. al. adopted a two-layer feed-forward deep Gaussian 

process as the task learner of source and target domains. Based on the pre-training and fine-tune strategy, 
some transfer learning methods have been proposed, including [9, 11, 14]. Besides, some parameter 

sharing methods are also proposed such as Weakly-shared DTN [10] and SSF-CNN [11]. SSF-CNN 

[13] is a method to learn structure and strength of CNN filters based on the pre-training model, where it 
fine-tunes coefficients for each filter respectively.  

The proposed method is the deep network-related methods but it differs from the existing deep 

network-related methods. We construct the regularized deep network such that the relationship between 
the source domain data and the target domain data can be well determined. Besides, we construct a set 

of SVM models for each task with respect to each domain, which are embedded in multi-task framework. 

This multi-task framework yields the parameter sharing such that the source domain data can assist to 

construct the predictive SVM in the target domain. 
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2.2. Support Vector Machine  

Support vector machine is firstly proposed in Ref. [15], which is served as a binary classifier. And many 

modifications are proposed to improve the performance of SVM such as introduction of kernel function 
[16]. In binary SVM, the optimal hyperplane in feature space is formulated by w and b. And the objective 

of SVM is 

min
𝒘,𝑏,𝜉𝑖

∙
1

2
‖𝒘‖2

2 + 𝐶 ∑ 𝜉𝑖

𝑖

   

𝑠. 𝑡.∙ 𝑦𝑖(𝒘𝑇𝒙 + 𝑏) ≤ 1 − 𝜉𝑖 , 𝑖 = 1,2, ⋯ , 𝑛 
∙ 𝜉𝑖 ≥ 0, 𝑖 = 1,2, ⋯ , 𝑛 

(1) 

where 𝜉𝑖  relaxes the hard margin constrain. There are a variety of SVM extensions, for example, a 

regularized multi-task SVM is proposed for multi-task learning setting in Ref. [6]. For parallelization, 

SVM with optimizing methods based on gradient have been proposed, such as Pegasos [17], P-
packSVM [18], where Pegasos [17] is a method that considers the sub-gradient for optimization and has 

been proposed with convergence analysis and complexity analysis. P-packSVM [18] has embraced the 

best known stochastic gradient descent method to optimize the primal objective which achieves a 

parallel implementation.  
In this paper, we exploit a set of SVM models for each task with respect to each domain, which are 

embedded in multi-task framework. This multi-task framework yields the parameter sharing. The shared 

parameters are to determine the similarity among multiple domains samples and the data from source 
domain can assist to construct the predictive SVM in the target domain. In addition, we modify the 

objective function of the SVM model so that the simultaneous optimization for deep network and SVM 

models are available. 

3. The Proposed Method 

3.1. Objective Function 

Assume that we are given two sets of data from two domains respectively. Namely, the source domain 

denoted as 𝒟𝑠 =  𝒳𝑠 × 𝒴𝑠 =  {(𝒙1𝑠 , 𝑦1𝑠), (𝒙2𝑠 , 𝑦2𝑠), . . . , (𝒙𝑛𝑠 , 𝑦𝑛𝑠)} , while the other one is target 

domain denoted as 𝒟𝑡 =  𝒳𝑡 × 𝒴𝑡 =  {(𝒙1𝑡 , 𝑦1𝑡), (𝒙2𝑡 , 𝑦2𝑡), . . . , (𝒙𝑛𝑡 , 𝑦𝑛𝑡)} , where 𝒳  denotes the 

sample space and 𝒴 is the label space. As for arbitrary 𝑖−th sample 𝒙𝑖𝑠 = [𝑥1, 𝑥2, . . . , 𝑥𝑑]𝑇 ∈ ℝ𝑑 with 

its labels 𝑦𝑖𝑠 ∈ {−1,1} from the source domain, 𝑦𝑖𝑠 is 1 if and only if the label is associated with instance 

𝒙𝑖𝑠, otherwise 𝑦𝑖𝑠 is -1. For (𝒙𝑖𝑡, 𝑦𝑖𝑡), we have the same explanation. 

Given the arbitrary 𝑖−th sample, we adopt two deep networks as the non-linear feature mapping for 
source domains and target domains respectively so that a high-level feature representation can be 

achieved. Let 𝜓𝑠(𝒙𝑖𝑠; 𝜣𝑠) = 𝒔𝑖𝑠 = [𝑠1 , 𝑠2, … , 𝑠𝑑2
]𝑇 ∈ ℝ𝑑2  with parameter 𝜣𝑠 denote the mapping w.r.t. 

the source domain. Let 𝜓𝑡(𝒙𝑖𝑡; 𝜣𝑡) = 𝒔𝑖𝑡 = [𝑠1 , 𝑠2, … , 𝑠𝑑2
]𝑇 ∈ ℝ𝑑2  with parameter 𝜣𝑡  denote the 

mapping w.r.t. the target domain.  

Given the arbitrary 𝑖-th sample from the target domain 𝒙𝑖𝑡, its corresponding feature representation 

is 𝒔𝑖𝑡 = 𝜓𝑡(𝒙𝑖𝑡). Then the classification task in the target domain is set as SVM-based binary classifier 

as follow. 

𝑦𝑖𝑡 = {
+1, (𝒘 + 𝒗𝑡)T𝒔𝑖𝑡 + 𝑏𝑡 ≥ 0

−1, (𝒘 + 𝒗𝑡)T𝒔𝑖𝑡 + 𝑏𝑡 < 0
 (2) 

where 𝒘 is the shared parameter for source tasks and target task, while 𝒗𝑡 is the specific parameter for 

the target task. For the classification task in the source domain is similar to (2) with the shared parameter 

𝒘 and specific parameter for the source task 𝒗𝑡. 
The motivation of above formulations is presented as follow. Firstly, in this method, given the 

sample, the deep network can learn a high-level feature representation so as to improve the classification 

accuracy [5]. Besides, considering the multi-task transfer learning setting, there is a relationship between 

the source domain and the target domain. Moreover, the classifier corresponding to each domain is of 
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similarity, and the shared parameter is to well capture this consistency [8]. Considering the variety of 

all tasks, the parameter 𝒗𝑡and 𝒗𝑠 are constructed to capture the own data distribution characteristic of 

each domain.  
Besides, the similarity of data from two domains is also important, we take the regularization term 
‖�̅�𝑖𝑡 − �̅�𝑖𝑠‖2 into consideration. �̅�𝑖𝑡 is the average value over all 𝒔𝑖𝑡 and �̅�𝑖𝑠 is the average value over all 

𝒔𝑖𝑠. The motivation is that the high similarity of 𝒔𝑖𝑡 and 𝒔𝑖𝑡 can help to construct the classifier w.r.t. the 

target task. We also exploit the 𝑙-2 norm regularization to limit the complexity of the model. The Dratle 
model is optimized by integrating deep networks, SVM and the regularization terms mentioned above. 

Then, we have the following expression. 

min
𝒘,𝑏𝑠𝑏𝑡,𝜉𝑖𝑠𝜉𝑖𝑡 ,𝜣𝑠,𝜣𝑡 ,𝒗𝑡,𝒗𝑠 

∙
𝜆

2
‖𝒘‖2 +

𝜆𝑡

2
‖𝒗𝑡‖2 +

𝜆𝑠

2
‖𝒗𝑠‖2 + 𝑐 (∑ 𝜉𝑖𝑠

𝑖

+ ∑ 𝜉𝑖𝑡

𝑖

)  

∙ +𝛾0‖𝜣𝑡‖𝐹
2 + 𝛾0‖𝜣𝑠‖𝐹

2 + 𝛾1‖�̅�𝑖𝑡 − �̅�𝑖𝑠‖2 
𝑠. 𝑡.∙ 𝑦𝑖𝑠((𝒘 + 𝒗𝑠)T𝒔𝑖𝑠 + 𝑏𝑠) ≥ 1 − 𝜉𝑖𝑠 ∀𝑖𝑠 

∙ 𝑦𝑖𝑡((𝒘 + 𝒗𝑡)T𝒔𝑖𝑡 + 𝑏𝑡) ≥ 1 − 𝜉𝑖𝑡  ∀𝑖𝑡 

(3) 

where 𝜆𝑠 , 𝜆𝑡 , 𝜆,  𝑐 , 𝛾0  and 𝛾1  are the trade-off parameters to balance the effect of those respective 
regularizations such that all these regularizations are in the same order of magnitude. 

3.2. Optimization and Pseudo-Codes 

In this section, the optimization of Dratle is presented. The initial parameters are set as random values, 

including 𝒘, 𝑏𝑠𝑏𝑡, 𝜣𝑠 , 𝜣𝑡 , 𝒗𝑡 , 𝒗𝑠. And an end-to-end optimization is utilized to minimize the objective. 
Consider the hinge loss and the idea of mini-batch gradient descent. The objective in (3) can be written 

as 

∙ ℒ(𝒘, 𝒗𝑠 , 𝒗𝑡 , 𝜣𝑠 , 𝜣𝑡 , 𝑏𝑡 , 𝑏𝑠) 

=∙
𝜆

2
‖𝒘‖2 +

𝜆𝑡

2
‖𝒗𝑡‖2 +

𝜆𝑠

2
‖𝒗𝑠‖2 + 𝛾0‖𝜣𝑡‖𝐹

2 + 𝛾0‖𝜣𝑠‖𝐹
2 + 𝛾1‖�̅�𝑖𝑡 − �̅�𝑖𝑠‖2 

+ ∙
1

|ℬ𝑠|
∑ max (0,1 − 𝑦𝑖𝑠((𝒘 + 𝒗𝑠)T𝒔𝑖𝑠 + 𝑏𝑠))

(𝒙𝑖𝑠,𝑦𝑖𝑠)∈ℬ𝑠

 

+ ∙
1

|ℬ𝑡|
∑ max (0,1 − 𝑦𝑖𝑡((𝒘 + 𝒗𝑡)T𝒔𝑖𝑡 + 𝑏𝑡))

(𝒙𝑖𝑡 ,𝑦𝑖𝑡)∈ℬ𝑡

 

(4) 

where �̅�𝑖𝑠 =
1

|ℬ𝑠|
∑ 𝒔𝑖𝑠𝒙𝑖𝑠∈ℬ𝑠

, �̅�𝑖𝑡 =
1

|ℬ𝑡 |
∑ 𝒔𝑖𝑡𝒙𝑖𝑡∈ℬ𝑡

. ℬ𝑠 denotes a mini-batch of samples drawn from 𝒟𝑠 

and ℬ𝑡  for 𝒟𝑡. And the objective function of this method is  

                                                min
𝒘,𝑏𝑠𝑏𝑡,𝜣𝑠,𝜣𝑡 ,𝒗𝑡,𝒗𝑠 

ℒ(𝒘, 𝒗𝑠 , 𝒗𝑡 , 𝜣𝑠 , 𝜣𝑡 , 𝑏𝑡 , 𝑏𝑠)   

(5) 

Algorithm 1. Optimization of Dratle 

Require: Specify the trade-off parameters  𝜆𝑠, 𝜆𝑡, 𝜆, 𝛾0 and 𝛾1. 

Require: Initialize the parameters in Dratle. 
1: for all h=1:max training step do 

2:     Load ℬ𝑠 , ℬ𝑡 from two domain 

3:     for all samples in ℬ𝑠 do 

4:         Feed 𝒙𝑖𝑠 into deep networks 𝜓𝑠(𝒙𝑖𝑠; 𝜣𝑠). 
5:         Compute (𝒘 + 𝒗𝑠)T𝒔𝑖𝑠 + 𝑏𝑠. 
6:     end for 

7:     for all samples in ℬ𝑡  do 

8:         Feed 𝒙𝑖𝑡 into deep networks 𝜓𝑡(𝒙𝑖𝑡; 𝜣𝑡). 
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9:         Compute (𝒘 + 𝒗𝑡)T𝒔𝑖𝑡 + 𝑏𝑡. 

10:     end for 

11:     Compute the 𝛻�̃�ℒ according to (6) and (7). 

12:     Compute the 𝛻�̃�ℒ according to (8) and (9). 
13:     Compute the Compute gradients with respect to 𝜣𝑠 , 𝜣𝑡 according to(10), (11) and 

backpropagation algorithm. 

14:     Update the parameters in Dratle based on the Adam method. 
15: end for 

Given a mini-batch of samples  ℬ𝑠 drawn from 𝒟𝑠, and ℬ𝑡  drawn from 𝒟𝑡. The gradient of ℒ with 

respect to 𝒘 represents as following expression. 

𝛻�̃�ℒ = 𝒘 +
1

|ℬ𝑠 ∪ ℬ𝑡|
∑

d

d�̃�
𝛥𝑖

𝒙𝑖∈ℬ𝑠∪ℬ𝑡

 (6) 

where ∆𝑖= max(0,1 − 𝑦𝑖 ((𝒘 + 𝒗)𝑇𝒔𝑖 + 𝑏) ), and 

d

d�̃�
𝛥𝑖 = − {

�̃�𝑖𝑦𝑖 , 𝑦𝑖(�̃� + �̃�)𝑇�̃�𝑖 ≤ 1

0, 𝑦𝑖(�̃� + �̃�)𝑇�̃�𝑖 > 1
 (7) 

Here, �̃�𝑖 = [𝒔𝑖
𝑇, 1]𝑇 , �̃� = [𝒗𝑇, 𝑏]𝑇 , and �̃� = [𝒘𝑇, 0]𝑇 . 𝒗 = 𝒗𝑠, 𝑏 = 𝑏𝑠, 𝒔𝑖 = 𝒔𝑖𝑠 if 𝒙𝑖 ∈ ℬ𝑠  and 𝒗 =

𝒗𝑡 , 𝑏 = 𝑏𝑡 , 𝒔𝑖 = 𝒔𝑖𝑡  if 𝒙𝑖 ∈  ℬ𝑡 . And the gradient of ℒ  with respect to 𝒗  represents as following 

expression. 

𝛻�̃�ℒ = 𝜆𝒗 +
1

|ℬ|
∑

d

d�̃�
𝛥𝑖

𝒙𝑖∈ℬ

 (8) 

d

d�̃�
𝛥𝑖 = − {

�̃�𝑖𝑦𝑖 , 𝑦𝑖(�̃� + �̃�)𝑇�̃�𝑖 ≤ 1

0, 𝑦𝑖(�̃� + �̃�)𝑇�̃�𝑖 > 1
 (9) 

where if 𝒙𝑖 ∈ ℬ𝑠, 𝜆 = 𝜆𝑠, ℬ = ℬ𝑠; otherwise, if 𝒙𝑖 ∈ ℬ𝑡 , 𝜆 = 𝜆𝑡, ℬ = ℬ𝑡 . 

Furthermore, the gradient of ℒ with respect to 𝒔𝑖 is shown as following formulas. 

𝛻𝒔𝑖
ℒ =

1

|ℬ|
∑

d

d𝒔𝑖
𝛥𝑖

𝑖

 (10) 

d

d𝒔𝑖
𝛥𝑖 = − {

𝑦𝑖(𝒘 + 𝒗), 𝑦𝑖(�̃� + �̃�)𝑇�̃�𝑖 ≤ 1

0, 𝑦𝑖(�̃� + �̃�)𝑇�̃�𝑖 > 1
 (11) 

Once the gradient of ℒ(𝒘, 𝒗𝑠 , 𝒗𝑡 , 𝜣𝑠 , 𝜣𝑡 , 𝑏𝑡 , 𝑏𝑠)  with respect to 𝒔𝑖 is visible, we can implement the 

backpropagation algorithm to compute the gradient with respect to parameters in latent layers in deep 

networks. And finally, the gradient-based optimization method can be implemented to optimize all 
parameters in Dratle method. Here, we adopt the mini-batch Adam method [19] to update parameters 

at each iteration, where Adam is an optimizer based on gradient descent and adaptive estimates of 

lower-order moments. Besides, the Adam method is straightforward to implement and has 
computational efficiency for little space complexity. Finally, the pseudo-codes of the proposed Dratle 

method is as Algorithm 1. 

For the above formulas, the optimal value of �̃�, �̃�  and 𝛩  are denoted as �̃�∗, �̃�∗  and 𝛩∗ 

respectively. We can conclude that the regret bound of the proposed Dratle method with Adam 
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optimizer is 𝑅(𝑇) = ∑ [ℒ − ℒ∗]𝑇
𝑡=1 = 𝑂(√𝑇) , and therefore 

𝑅(𝑇)

𝑇
= 𝑂(

1

√𝑇
). Similar to works in Ref. 

[17], given the loss value 𝜖, the complexity of runtime is 𝑂 (
1

𝜖2
). 

4. Experiment 

4.1. Baselines and Data Sets 
In the experiment, we compared Dratle with following famous transfer learning methods, such as 

DMTTL [8], SVM with deep network (SVM) [20], multi-task SVM (MTSVM) [6], multi-task transfer 

learning method (MTTL) [7], weakly-shared deep transfer learning (WSDTL) [10]. In the above 
methods, deep network-related methods include SVM, WSDTL and the proposed Dratle method. The 

non-deep network-related methods are DMTTL, MTSVM and MTTL.  

In the experiment, we study the performance of Dratle based on transfer learning data sets such as 

20 Newsgroups and Reuters. The detail information about the data set is shown in table 1. The 20 
Newsgroups is a popular data set for experiment in text classification. It is comprised of 20 sub-classes 

which is grouped into 7 classes, including comp, rec, sci, misc, talk, alt, and soc. Here, we exploit 4 

classes, including comp, rec, sci and talk. Besides, these 4 classes achieve the first 3 settings in table 1.  
As for Reuters data set, there are 5 classes, such as Exchanges, Orgs, People Places and Topics. Each 

class has a number of sub-classes. Here, we exploit three classes, including Orgs, People and Places. 

Also, these 3 classes achieve the second 3 settings in table 1. 

Table 1. Data settings. 

Settings 
Source domain Target domain 

Positive class Negative class Positive class Negative class 

C v.s. R_C Comp Rec, sci, talk Comp Rec, sci, talk 

R v.s. R_R Rec Comp, sci, talk Rec Comp, sci, talk 

S v.s. R_S Sci Comp, rec, talk Sci Comp, rec, talk 

O v.s. R_O Orgs People, Places Orgs People, Places 

E v.s. R_E People Orgs, Places People Orgs, Places 

L v.s. R_L Places Orgs, People Places Orgs, People 

M0 v.s. R_M0 0 in MNIST 1~9 in MNIST 0 in USPS 1~9 in USPS 

M9 v.s. R_M9 9 in MNIST 0~8 in MNIST 9 in USPS 0~8 in USPS 

U0 v.s. R_U0 0 in USPS 1~9 in USPS 0 in MNIST 1~9 in MNIST 

U9 v.s. R_U9 9 in USPS 0~8 in USPS 9 in MNIST 0~8 in MNIST 

In addition, we also conduct transfer learning in the image data sets, including MNIST and USPS. 

These data sets are composed of digit images with ten labels from 0 to 9. Among them, MNIST and 
USPS are grayscale image set. Here we conduct the experiment between them. We randomly select 

images belong to the labels from 0 to 9 as the positive classes, while the rest classes are negative classes. 

These 2 classes achieve the last 4 settings in table 1. 

The first six settings in table 1 have the same explanation as follows. For the first setting C v.s. R_C, 
the alphabet C denotes Comp class and R_C is the rest classes including rec, sci and talk. The target 

domain is a sub-class in comp, rec, sci and talk, and rest sub-classes are set as source domain. In the last 

four settings, M0 v.s. R_M0 denotes that the positive class is 0 in MINIST dataset while the rest classes 
1 to 9 are set as negative class. Besides, the source domain and target domain are highlighted respectively 

in table 1. 
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4.2. Parameters Settings 

In this experiment, we exploit the five-fold cross validation method to search for the optimal trade-off 

parameters settings. The data from the data set is normalized into a range from 0 to 1. For the baselines, 
we following their parameter settings, including the trade-off parameters searching interval and their 

parameter settings optimization methods. As for deep network-related methods, like SVM, WSDTL and 

the proposed Dratle method, they share the same deep network structure as shown in table 2, where fc 

denotes the fully connected layer.  

Table 2. The deep network structures. 

Sample of 𝑑-dimension 
512-d fc activated 

by Relu  

256-d fc activated 

by Relu 

128-d fc activated 

by Relu 
1-d fc 

The settings of proposed method are presented as follows. The regularization parameters for SVMs,  

𝜆𝑠 , 𝜆𝑡 , and 𝜆, are searched in the set {1−3, 1−2, 1−1, 10 , 11, 12 , 13, }. The  𝛾0  to regularize the deep 

network is searched in the set {1−5, 1−4, 1−3 , 1−2 , 1−1}. To enhance the similarity of 𝒔𝑖𝑡 and 𝒔𝑖𝑠, the 

optimal value of 𝛾1 is searched in the set {2−4, 2−3, 2−2, 2−1, 20, 21 , 22 , 23}. 

4.3. Experiment Result 

Let 𝑟 denote the percentage of used training samples from the target domain. The results of all baselines 

with all data sets is shown in table 3. Furthermore, we implement these methods with different sizes of 

source training set. Besides, we use the setting, 0 v.s. R_0, with increasing the 𝑟 from 0.01 to 0.5, and 
the accuracy is shown in figure 1. Based on these works, we have the follow four observations. 

(1) The proposed Dratle method delivers the highest accuracy in most cases. For example, when 𝑟 is 

0.05, we can see that in the C v.s. R_C setting, the accuracy of Dratle is 83.7%. Moreover, the accuracy 
of O v.s. R_O is 85.7% and that of M0 v.s. R_M0 is 87.4%. The outperformance of Dratle method 

manifest the advance of the proposed Dratle method. The reason is that, in the Dratle method, the shared 

parameter and the similarity regularization as (4) works well.  

(2) Deep network related methods achieve better performance than non-deep networks methods. We 
can see that the SVM, WSDTL, and the proposed Dratle method can achieve higher accuracy than 

DMTTL, MTSVM and MTTL. The reason is that, although they are fed with the same feature, these 

deep network-related methods are able to learn a high-level feature representation, which can improve 
the classification accuracy. 

Table 3. Result of experiment with 𝑟 = 0.05 . Ablation experiment is conducted in the last three 

columns. 

Settings DMTTL MTTL MTSVM WSDTL SVM Dratle 

C v.s. R_C 0.825 0.796 0.725 0.829 0. 827 0.837 

R v.s. R_R 0.849 0.802 0.712 0.862 0.839 0.881 

S v.s. R_S 0.824 0.813 0.703 0.833 0.828 0.873 

O v.s. R_O 0.770 0.698 0.585 0.798 0.807 0.857 

E v.s. R_E 0.788 0.714 0.623 0.794 0.801 0.829 

L v.s. R_L 0.806 0.639 0.610 0.819 0.828 0.861 

M0 v.s. R_M0 0.759 0.735 0.698 0.775 0.795 0.874 

M9 v.s. R_M9 0.674 0.542 0.564 0.692 0.682 0.785 

U0 v.s. R_U0 0.571 0.514 0.503 0.584 0.586 0.774 

U9 v.s. R_U9 0.544 0.546 0.465 0.546 0.551 0.706 
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Figure 1. Accuracy curves on 0 v.s. R_0 for 6 methods. 

(3) The proposed Dratle outperforms in ablation experiment. Comparing Dratle and SVM method, 

we can easily to conclude that the shared parameter and the similarity regularization as (4) is able to 
improve the performance of classification task in the target domain. The reason is that these term in (4) 

is able to utilize the source domain data to assist constructing a predictive classifier in the target domain. 

The outperformance of Dratle over WSDTL manifest the feasibility of similarity regularization in (4). 
The reason is that although both Dratle and WSDTL exploit the parameter sharing mechanism, but the 

Dratle also exploit the similarity regularization in (4) so that the relationship between the source domain 

and the target domain can be well determined.  

(4) From figure 1, we can see that if the ratio 𝑟 increases, the accuracy of the Dratle also increases. 
The reason behind this is that target domain data will contain more information and the classifier is able 

to effectively capture the target domain data distribution. These data assist to construct a more predictive 

classifier in the target domain and the generalization ability of target domain classifier is enhanced. In 
addition, with different training samples, Dratle always outperforms over other methods. 

5. Conclusion and Future Work 

In this paper, we proposed a multi-task transfer learning method called Dratle based on the SVM and 
deep network. In the proposed Dratle, we use the sharing parameter and similarity regularization method 

to well determine the relationship between the source domain and the target domain. We also revised 

the SVM so as that the gradient-based optimization method is feasible, which yields the end-to-end 
optimization for this transfer learning based deep network. Besides, in the experiment, the proposed 

method performs better in the benchmark transfer learning data set. In the future, we will pay more 

attention on Dratle method with outlier detection and data stream application. 
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