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Abstract. Facial expression recognition (FER) is a meaningful but challenging research 

direction. An important reason is that the image resolution used for FER is usually low. At 

present, there is no specially designed model for the challenge of low resolution FER. We 

propose a low resolution expression recognition network with front and back end structure 

using specially designed dilated convolution groups. In addition, for the need of pension 

agency, we establish a dataset for studying FER of the old in Asian countries and we named it 

AOPFE. We evaluate our method on three standard datasets (RAF, SFEW and CK+) and 

AOPFE. In our experiments, the method achieved good results in these datasets especially on 

RAF dataset.  

1. Introduction 

Facial expression recognition (FER) is a meaningful and challenging research direction in computer 

vision field, which aims at analysing and identifying human expression states. With the continuous 
improvement of hardware computing power and the rapid development of AI technology, FER 

algorithms are also constantly improving. FRE algorithms are divided into symbol-based algorithms 

and feature-based algorithms according to characteristics. Feature-based algorithms are classified as 

traditional manual features-based algorithms and deep learning algorithms. 
Symbol-based algorithms, represented by FACS [1], divide faces into several action units to 

analyse the categories of facial expressions through features combination. The method based on 

traditional manual features first extracts manual features, such as LBP [2], BOW [3], HOG [4] and 
SIFT [5] and then uses SVM, NN and other classifiers for FER [6]. 

Deep learning features-based method is the mainstream method of FER, and has achieved good 

results in laboratory environments [7-11]. But the recognition accuracy of these methods in real scenes 
is still not ideal. Deeper neural network model can usually bring better recognition effect. However, 

the resolution of image used for expression recognition is generally low. With the increase of the 

depth of the neural network and pooling times, it is not possible to effectively extract deep features 

while increasing the field of receptivity, which makes the recognition performance terrible. For this 
question, there is no relevant solution now. In this paper, a novel front-back end CNN model is 

proposed. The front-end network is a typical CNN model. The back-end network introduces a 

specially designed combination of dilated convolutions, which can fully extract deep features while 
broadening reception field. The model proposed is suitable for FER of low resolution inputs, and it can 

improve the effect of FER effectively. We name it Low Resolution Expression Recognition Network 

(LRERNet).  
In addition, due to the increasing trend of the aged in Asian countries such as China and Japan, we 

try to monitor the expression status of the aged in the nursing homes in real time, so as to timely 



ICCSCT 2020

Journal of Physics: Conference Series 1621 (2020) 012086

IOP Publishing

doi:10.1088/1742-6596/1621/1/012086

2

feedback information to the corresponding caregivers or family members, and pay attention to the 

health of the aged. Combining with this practical application scenario, this paper established a dataset 

for the study of FER of the aged, which is also used to test LRERNet. In this paper, there are two main 
contributions: 

 A low resolution expression recognition network which is more suitable for low resolution image 

facial expression recognition is proposed. We test our method on three standard datasets and 
experiments indicate that our model achieved good results in these datasets especially on RAF [12] 

dataset. 

 In combination with the actual application scenarios, we establish a dataset for studying FER of 

the old and we test our method on it. 

2. Proposed Framework 

We first briefly introduce dilated convolution, and then analyse the shortcomings of ordinary 

convolution neural networks and propose LRERNet. Finally, the loss function we used is described. 

2.1. A Brief Review of Dilated Convolution 

Dilated convolution [13] was originally applied to semantic segmentation tasks, and the model can 

provide a broader field of perception with no pooling operations and a comparable amount of 
computation, so as to improve the accuracy of pixel prediction. Dilated convolution can be defined as: 

 y(𝑚, 𝑛) = ∑ ∑ 𝑥(𝑚 + 𝑟 × 𝑖, 𝑛 + 𝑟 × 𝑗)𝑤(𝑖, 𝑗)𝑁
𝑗=1

𝑀
𝑖=1  (1) 

where 𝑥(𝑚, 𝑛) stands for the input information. 𝑤(𝑖, 𝑗) is a filter with a length of M and a width of N. 

𝑦(𝑚, 𝑛) is the output information. The parameter 𝑟  represents the dilate rate. 

2.2. Low Resolution Expression Recognition Network (LRERNet) 
As we all know, the performance of CNN increases with depth [14]. At the same time, for increasing 

the receptive field, the pool layers are usually used to subsample feature maps. However, pooling 

operations will lead to the loss of spatial details, so when the resolution of the images inputted directly 
into most CNN models is small, the depth of these CNN models is limited to some extent. 

For reducing pooling operation frequency and maintain the receptive field, we improved vgg-16 by 

using the cavity convolution group, and designed a low resolution expression recognition network 

with front and back end structure. The model’s structure we proposed is shown in figure 1. Referring 
to the related work of using VGG structure for improvement [15-18], we choose vgg-16 after 

removing the full connection layer as the front-end of LRERNet. The back-end of the model is 

composed of three dilated convolutions in series. The dilated convolution group uses dilated 
convolution layers with dilated rates of 1, 2 and 3 to extract the features of inputted images, and we 

connect these features in turn, then use 1 × 1 convolution to integrate the features of each dilated 

convolution to improve the expression ability. Finally, a full connection layer is connected to complete 

the task of classification and recognition through the Softmax layer. 

2.3. Loss Function 

Centre loss [19] is an improved form of Softmax loss. While monitoring the model training, the centre 

loss calculates a class centre for each category, and studies and corrects the class centre in the way of 
measuring learning, so as to increase the discriminability of features. The definition formula of the 

central loss function is described as 
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Figure 1. The structure of LRERNet. 

 𝐿𝑐 =
1

2
∑ ‖𝑥𝑖 − 𝑐𝑦𝑖‖

2

2𝑛
𝑖=1  (2) 

 
∂𝐿𝑐

∂𝑥𝑖
= 𝑥𝑖 − 𝑐𝑦𝑖  (3) 

where 𝑛 is the sample size in one batch, 𝑦𝑖 denotes the class label of the 𝑖𝑡ℎ sample,  𝑥𝑖 is the feature 

vector output of the 𝑖𝑡ℎ sample, and 𝑐𝑦𝑖 is the feature centre of the category of 𝑦𝑖. 

The feature center 𝑐𝑦𝑖 is constantly updated, and the samples with similar features gradually gather 

to the center. The process can be described as 

 Δ𝑐𝑗 =
∑ 𝛿(𝑦𝑖,𝑗)·(𝑐𝑗−𝑥𝑖)𝑛

𝑖=1

1+∑ 𝛿(𝑦𝑖,𝑗)𝑛
𝑖=1

 (4) 

 𝑐𝑗
𝑡+1 = 𝑐𝑗

𝑡 − 𝛼∆𝑐𝑗
𝑡 (5) 

where 𝑐𝑗  is the feature centre of the category of 𝑗. 𝛼 denotes the learning rate. 

3. Experiments  
We evaluated our model on several existing datasets, including RAF, SFEW [20, 21] and CK+ [22]. In 
addition, we build a dataset named AOPFE to study the facial expression of the elderly in Asia and 

evaluated our model on this dataset. 

3.1. Implementation Details 
First of all, we use IntraFace [23] to align the faces of the images, and save the images containing only 

the faces. In order to minimize the effects of various kinds of light, we transform all the inputted 

images into grey images. For avoiding over fitting, we expand the data using the method of horizontal 
flip and rotation. 

The Adam optimizer is used to update parameters. We use 0.001 as the initial learning rate. And 

the momentum is 0.8. We implement the method proposed by Pytorch, and the GPU we use is GTX 

1080TI. 

3.2. Expression Recognition Results 

The RAF dataset contains 29672 facial images in real scenes downloaded from the Internet. There are 

differences in illumination, head posture and face occlusion between images. At present, the image 
quality of RAF dataset is relatively better, the image annotation credibility is higher, and the data 

processing is complete. In table 1, the comparison results between LRERNet and existing methods on 

RAF dataset are given. From table 1 we can know that the accuracy of the LRERNet proposed in this 



ICCSCT 2020

Journal of Physics: Conference Series 1621 (2020) 012086

IOP Publishing

doi:10.1088/1742-6596/1621/1/012086

4

paper is 73.62%. Compared with the baseline network and DLPCNN, the recognition effect is 

improved. As far as we know, the LRERNet is superior to the SOTA method on RAF dataset. 

Table 1. Comparison with existing model on the RAF dataset for FER. 

Model Accuracy 

VGG-16 62.97% 

BaseDCNN 63.61% 

DLPCNN 70.98% 

LRERNet (Ours) 73.62% 

The SFEW dataset contains different head posture and different age expression images, which can 

be regarded as facial expression dataset in natural environment. However, because the size of SFEW 

dataset is small, we use the RAF dataset to pre-train the model and do transfer training on SFEW 

dataset. The comparison results are shown in table 2. On the SFEW dataset, the recognition accuracy 
of LRERNet is 48.09%, and the recognition accuracy of the existing methods is generally low. The 

main reason is that there are not enough images in the dataset, and the facial expressions are all natural 

states, so there are many interfering factors and it is difficult to recognize. So the model needs to be 

further improved and improved. 

Table 2. Comparison with existing model on the SFEW dataset for FER. 

Model Accuracy 

AUDN [24] 30.14% 

CNN-MBP [25] 51.75% 

DLP-CNN 51.05% 

SFEW best [26] 52.50% 

GDFER [27] 47.70% 

LRERNet (Ours) 48.09% 

The CK+ dataset is widely used for FER and collected under laboratory conditions. All images in 
the dataset are 640×480 resolution, and the dataset contains 593 expression sequences, but only 327 of 

them have expression labels. For the sake of verifying the model proposed, we use part of images in 

the expression sequence for FER. We select peak expression images in each expression sequence as 
training data. From table 3, we can know that LRERNet has achieved 98.51% recognition accuracy. 

Compared with the RAF dataset and SFEW dataset, the overall recognition accuracy is higher. The 

reason is that the CK+ dataset is obtained under laboratory conditions. The face images are clear, the 

illumination is uniform, and the postures are unified. Therefore, the recognition rates of all methods 
are relatively high. 

We created a facial expression dataset for the elderly in Asia named AOPFE. The images in the 

dataset are all facial expressions of the elderly in the natural state, and all the images are obtained 
through the Internet. After strict manual filtering and annotation, the final dataset contains 300 images. 

Most of the dataset images are happy or neutral expressions, and there are few negative expressions, 

so the dataset is used in the form of two classify. 

We compare VGG-16 as baseline with LRERNet on this dataset. According to the results in table 
4, LRERNet has achieved 86% recognition accuracy, which is significantly improved compared with 

the baseline model. 
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Table 3. Comparison with existing model on the CK+ dataset for FER. 

Model Accuracy 

AUDN 93.70% 

LOMo 92.00% 

DLP-CNN 70.98% 

DTGAN [28] 97.25% 

Peak-Piloted [29] 99.30% 

GDFER 93.20% 

LRERNet (Ours) 98.51% 

Table 4. Comparison with existing model on the AOPFE dataset for FER. 

Model Accuracy 

VGG-16 84.00% 

LRERNet (Ours) 86.00% 

4. Conclusion 

In order to reduce the number of pooling operations and maintain the receptive field, we proposed a 

low resolution expression recognition network, which is appropriate for low-resolution expression 
images. Experimental results show that the model we proposed can effectively improve the 

recognition ability of low-resolution expression images. Finally, we build a dataset to study the FER 

of the elderly and test our model on it. 
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