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Abstract. A kinetic entropy diagnostic was systematically developed for fully kinetic
collisionless particle-in-cell (PIC) simulations in Liang et al., Phys. Plasmas 26, 082903 (2019).
Here, we first show that kinetic entropy can be used to quantitatively evaluate numerical
dissipation in the PIC simulation. Assuming numerical effects can be treated using a relaxation
time approximation collision operator, the rate of increase of the kinetic entropy is related to the
kinetic entropy. The effective collision frequency due to numerical effects is then easy to evaluate
in a collisionless PIC simulation. We find an effective collision frequency of approximately a
tenth of the ion cyclotron frequency. This could have important implications for collisionless
PIC simulation studies of magnetic reconnection, plasma turbulence, and collisionless shocks.
Then, we analyze the uncertainty of the local kinetic entropy density at different locations as
a function of the chosen velocity space grid. We find that although the numerically obtained
kinetic entropy density varies significantly for small or large velocity space grids, there is a range
for which the kinetic entropy density is only weakly sensitive to the velocity space grid. Our
analysis of the uncertainty suggests a velocity space grid close to the thermal velocity is optimal,
and the uncertainty introduced is significantly less than the physical change in kinetic entropy
density.

1. Introduction
Understanding how energy is dissipated via fundamental plasma processes is crucial in many
astrophysical, heliospheric, and planetary studies. In settings for which the plasma is nearly
collisionless, dissipation often occurs via plasma processes such as magnetic reconnection [1, 2, 3],
plasma turbulence [4, 5], and collisionless shocks [6]. Although the ability to investigate these
plasma processes observationally, experimentally, numerically, and theoretically is improving,
identifying when and where dissipation occurs is still a key challenge [3, 7].

Entropy is a natural candidate to identify and quantify dissipation because for closed systems
it is conserved in the absence of dissipation and is non-decreasing in time when dissipation
is present. In the kinetic description, kinetic entropy is a measure of the number of ways
to arrange particles in the plasma to produce a given distribution of plasma in phase space
[8, 9]. If distribution functions are isotropic, the fluid/thermodynamic form of entropy per
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particle is related to p/ργ , where p is the scalar pressure, ρ is the mass density, and γ is
the ratio of specific heats. The fluid form has been used to study numerous plasma systems
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Due to the fact that many astrophysical, heliophysical, and planetary plasmas are weakly
collisional, distribution functions can strongly deviate from isotropy, especially when the system
dynamics has spatial or temporal structure at kinetic scales (at and below the gyroradius of
charged particles in magnetic fields). Within the gyrokinetic model, the perturbed kinetic
entropy is related to the square of the perturbed distribution function [21, 22, 23], which has
been used to analyze magnetic reconnection [24, 25] and plasma turbulence [26, 27, 28, 29, 30,
31, 32, 33, 34]. There are settings for which the physical system does not obey the gyrokinetic
description, such as when distribution functions are significantly non-gyrotropic [35, 36, 37].
Thus, studying kinetic entropy without any degrees of freedom integrated out is important.
Kinetic entropy in full generality has been investigated in observational [38, 39, 40, 41, 42] and
theoretical [43, 44] studies. The kinetic entropy has also been employed in particle-in-cell (PIC)
simulations to study plasma turbulence [45] and magnetic reconnection [46], the latter of which
we refer to as Study 1.

Despite these efforts, there are challenges to understand entropy production in real systems
using theory and simulations. For example, associating entropy production with dissipation
requires a closed system, but natural systems tend not to be closed. Also, a local increase
of kinetic entropy density could be due to convection of inhomogeneous plasma parameters
such as density or temperature rather than being due to dissipation, making the recognition
of dissipation ambiguous. In numerical studies, numerical errors in simulations effectively
generate a spurious change in entropy, making the simulation results potentially unphysical
and complicating comparisons between simulations and observations. In this study, we address
two numerical aspects of kinetic entropy in PIC simulations.

Study 1 performed a systematic analysis of the kinetic entropy diagnostic in fully kinetic
PIC simulation from first principles. The kinetic entropy was calculated for a simple case of
collisionless two-dimensional (2D) anti-parallel magnetic reconnection with periodic boundary
conditions in order to examine how accurately a collisionless PIC simulation conserves kinetic
entropy in a closed system. They found that for a simulation with total energy showing excellent
conservation – it only increased by 0.24% – the relative changes of the kinetic entropy were
about 4.5%, 2.1% and 3.2% for electrons, ions, and total, respectively. This level conservation is
reasonably good; by comparison nearly one-third of the electromagnetic energy was converted
into particle kinetic energy over the same time.

Interestingly, Study 1 reported that kinetic entropy monotonically increased in time, which
is what one would expect for an explicit physical collision operator. As there were no physical
collisions in the simulation, the increase of kinetic entropy is purely due to numerical effects.
As the kinetic entropy was non-decreasing, the effective numerical kinetic entropy production
in some way mimicked physical collisions. This suggests that it would be useful to quantify
the effective collisionality due to numerical aspects of the simulation. Doing so would allow
simulation users to better understand the effective collisions in their simulations, and to provide
a baseline necessary to overcome in order to study physical collisions for codes including an
explicit collision operator.

An analogous approach has long been used in magnetohydrodynamics (MHD) simulations,
especially in global simulations of the solar corona (e.g., [47, 48]) and planetary magnetospheres
(e.g., [48, 49, 50, 51, 52]), where the numerical algorithm introduces an effective dissipation to
ensure convergence (e.g., [53]). One approach to quantifying the numerical effective resistivity
in such MHD simulations is to investigate the properties of magnetic reconnection that happens
due to numerical dissipation at the grid (e.g., [48, 54]). In this study, we argue that kinetic
entropy measured in a PIC simulation can be a useful tool to estimate the effective collision
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frequency due to numerical effects. We find the effective collision frequency to be approximately
a tenth of the ion cyclotron frequency for the simulation in Study 1. Other approaches have been
used to estimate effective collision frequencies, especially in the early days of PIC simulations,
(e.g., [55, 56, 57, 58, 59, 60]).

Study 1 also included an effort to validate the kinetic entropy diagnostic and explore relevant
numerical parameters for proper usage of the diagnostic. They examined the velocity space grid
and the number of macro-particles per grid cell. For the velocity space grid ∆v, the uncertainty
of the measured kinetic entropy is quite sensitive to the selection of the velocity grid size. Study
1 reported that a velocity space grid of approximately the species thermal speed gives a kinetic
entropy integrated over the entire domain that is close to the predicted value at the initial
time when all the distribution functions were Maxwellian. However, they did not present how
the grid affects the accuracy of local measurements of the kinetic entropy from non-Maxwellian
distributions. This is important because even if the velocity space grid is chosen to give accurate
results at the initial time, there is no assurance it is still sufficient at later times. Here, we present
an analysis of the uncertainty due to the choice of the velocity space grid on the calculation of
the local kinetic entropy density for non-Maxwellian distributions at late time in the simulation
of Study 1.

We organize this paper as follows: Sec. 2 discusses a relation between kinetic entropy and a
modeled effective collision frequency in the simulations. Sec. 3 uses the PIC simulation results
from Study 1 to quantify the effective collision frequency and assess the reliability of the kinetic
entropy measurements as a function of velocity space grid. Sec. 4 summarizes the conclusions
and implications of this study.

2. Kinetic Entropy and Effective Collision Frequency
In this section, we derive a relation between the kinetic entropy and the effective collision
frequency. The continuous Boltzmann entropy density s(~r, t) is defined as

s(~r, t) = −kB
∫
d3vf(~r,~v, t) [ln f(~r,~v, t)] . (1)

From the Boltzmann equation, df(~r,~v, t)/dt = C[f(~r,~v, t)], where C[f(~r,~v, t)] is a collision
operator containing both inter- and intra-species collisions, one can derive an evolution equation
for s(~r, t) (e.g., [44]):

∂s(~r, t)

∂t
+∇ · ~J (~r, t) = −kB

∫
d3vC[f(~r,~v, t)][1 + ln f(~r,~v, t)], (2)

where ~J (~r, t) = −kB
∫
d3v~vf(~r,~v, t) ln f(~r,~v, t) is the entropy flux. This is a continuity equation

of kinetic entropy and the right hand side, related to the collision operator, is a source term.
To represent the numerical production of kinetic entropy, we assume a Bhatnagar-Gross-

Krook type relaxation time collision operator [61]. The original version was of the form
C[f(~r,~v, t)] = −ν[f(~r,~v, t)− f0(~r,~v, t)], where f0(~r,~v, t) is an equilibrium distribution function
and ν is a constant collision frequency whose inverse sets the time scale of the relaxation of
f(~r,~v, t) to f0(~r,~v, t). This operator lacks conservation law properties required of collision
operators, but gives a simplified operator that does reasonably well for distributions that do not
differ greatly from Maxwellian distributions. We employ a modified relaxation time collision
operator of

C[f(~r,~v, t)] = −ν(~r, t)[f(~r,~v, t)− fM (~r,~v, t)], (3)

for which the collision frequency ν(~r, t) can be a function of space and time, and the equilibrium
distribution f0(~r,~v, t) is replaced by the local Maxwellianized fM (~r,~v, t) defined as a Maxwellian
distribution with density n(~r, t), bulk flow velocity ~u(~r, t), and temperature T (~r, t) equivalent
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to those of the local distribution function f(~r,~v, t). Physically, this collision operator drives
distribution functions towards a Maxwellian with the local bulk properties, but if the system
dynamics changes the bulk properties at a given position it will then relax to the new
Maxwellianized distribution rather than an unknown equilibrium distribution f0(~r,~v, t). We
stress that this operator is used for expediency, not based on any evidence that the numerical
dissipation in a PIC simulation follows this collision operator.

Inserting the collision operator in Eq. (3) into Eq. (2), defining δf(~r,~v, t) = f(~r,~v, t) −
fM (~r,~v, t), and noting that

∫
d3vδf(~r,~v, t) = 0 because the density associated with fM (~r,~v, t)

is the same as the total density from f(~r,~v, t) by definition, straight-forward manipulations give

∂s(~r, t)

∂t
+∇ · ~J (~r, t) = ν(~r, t)kB

∫
d3vδf(~r,~v, t)

[
ln fM (~r,~v, t) + ln

(
1 +

δf(~r,~v, t)

fM (~r,~v, t)

)]
. (4)

The integral in the first term on the right, proportional to
∫
d3vδf(~r,~v, t) ln fM (~r,~v, t), is also

zero because ln fM (~r,~v, t) brings down a factor proportional to [~v − ~u(~r, t)]2, so the result is
the difference between the actual and Maxwellianized temperatures, which again is zero by
definition. Since the relaxation time collision operator is only valid if δf(~r,~v, t) is small, we do
an expansion in powers of δf(~r,~v, t). The leading term is second order,

∂s(~r, t)

∂t
+∇ · ~J (~r, t) = ν(~r, t)kB

∫
d3v

(
[δf(~r,~v, t)]2

fM (~r,~v, t)
+O(δf3)

)
, (5)

where O(δf3) indicates equal or higher order terms than δf3. On the other hand, defining
sM (~r, t) as the kinetic entropy from Eq. (1) evaluated with the Maxwellian distribution function
fM (~r,~v, t), we see that

sM (~r, t)− s(~r, t) = −kB
∫
d3vfM (~r,~v, t) ln fM (~r,~v, t) + kB

∫
d3vf(~r,~v, t) ln f(~r,~v, t)

= kB

∫
d3v[fM (~r,~v, t) + δf(~r,~v, t)] ln

(
1 +

δf(~r,~v, t)

fM (~r,~v, t)

)
= kB

∫
d3v

(
[δf(~r,~v, t)]2

2fM (~r,~v, t)
+O(δf3)

)
. (6)

This quantity, quadratic in δf(~r,~v, t), resembles the ε and enstrophy parameters introduced in
Refs. [62] and [63], respectively. Comparing Eqs. (5) and (6), we find

∂s(~r, t)

∂t
+∇ · ~J (~r, t) = 2ν(~r, t) [sM (~r, t)− s(~r, t)] +O(δf3). (7)

Integrating this equation over all position space gives

dS(t)

dt
' 2

∫
d3rν(~r, t) [sM (~r, t)− s(~r, t)] , (8)

where S(t) =
∫
d3rs(~r, t) is the total entropy. Finally, we define the effective collision frequency

νeff as the average collision frequency weighted by the departure from Maxwellianity,

νeff(t) =

∫
d3rν(~r, t) [sM (~r, t)− s(~r, t)]∫

d3r [sM (~r, t)− s(~r, t)]
. (9)

Then,
dS(t)

dt
' 2νeff(t)

∫
d3r [sM (~r, t)− s(~r, t)] , (10)
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Thus, within the confines of the assumptions that δf(~r,~v, t) is small and the relaxation time
approximation is reasonable, we find the difference between the local kinetic entropy density
and its value for its equivalent equilibrium distribution function is a source of kinetic entropy.
Since the Maxwellian distribution is the maximum entropy state for a given number of particles
and energy, sM (~r, t) ≥ s(~r, t), and any non-Maxwellian distribution is associated with a positive
collision frequency, as expected. The utility of writing the kinetic entropy evolution in this way
is that it is straightforward to calculate dS(t)/dt and

∫
d3r [sM (~r, t)− s(~r, t)] in PIC simulations,

which allows us to calculate the effective relaxation collision frequency νeff(t).

3. Results
The results in this section are generated from the same simulation in Study 1. Details of the
simulation setup are available in Study 1.

3.1. Effective Collision Frequency of Collisionless PIC Simulation
Here, we use the formalism discussed in Sec. 2 to estimate the effective collision frequency νeff(t)
in the simulation. From Eq. (10), we need the time rate of change of the kinetic entropy dS(t)/dt
and the spatial integral of sM (~r, t)− s(~r, t). In principle, this can be carried out for each species
individually or for the plasma as a whole.
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Figure 1. Determination of
effective collision frequency in
the PIC simulation. The plots
show the time t evolution of
the (a) reconnection rate, (b)
kinetic entropy S(t) relative to
its initial value S(0), (c) time
rate of change of the kinetic
entropy dS(t)/dt, (d) spatially
integrated sM (~r, t) − s(~r, t),
and (e) the associated effec-
tive collision frequency νeff(t)
calculated from Eq. (10). In
(b)-(e), the colors are for elec-
trons (red), ions (blue), and
their sum (black). Panel (a)
is reproduced from Liang et
al., Phys. Plasmas 26, 082903
(2019), with the permission of
AIP Publishing.
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To put the time evolution of the system in perspective, Fig. 1(a) shows the reconnection rate
in units of vA,upB0, where B0 is the asymptotic magnetic field and vA,up is the Alfvén speed
at the upstream edge of the diffusion region, as a function of time t in units of the inverse ion
cyclotron frequency Ω−1

ci based on B0, which was previously shown in Study 1. Reconnection
begins in earnest just before t = 20 Ω−1

ci . Panel (b) shows the kinetic entropy S(t) relative to
its initial value S(0) in units of kB as a function of time t, and panel (c) shows its time rate of
change. In both plots, the kinetic entropy of electrons is in red, ions in blue, and the total (their
sum) in black. The brief period at the beginning of the simulation where the ion kinetic entropy
increases relatively rapidly is because the initial current sheet thickness is 0.5 ion inertial scales,
so the ions in the current sheet self-adjust to a wider sheet until about t = 2 Ω−1

ci . Electrons do
not show such an effect because their gyro-radius is smaller than the current sheet thickness, so
their adjustment is smaller. From t = 2− 20 Ω−1

ci , the system is relatively quiet and numerical
kinetic entropy production is small. The rate of change of kinetic entropy begins to increase
when the reconnection begins in earnest around t = 20 Ω−1

ci , and continues increasing for nearly
the duration of the simulation.

The time rate of change of kinetic entropy shows different behavior for electrons and ions
during reconnection. The electron kinetic entropy increases before the ion kinetic entropy,
reaching a nearly steady rate for t > 27 Ω−1

ci , while the ion kinetic entropy increases more
slowly, reaching a nearly steady rate later in time at t = 37 Ω−1

ci . Physically, the electrons
develop non-Maxwellian distributions more rapidly than ions during the reconnection process,
which makes sense as it takes time for the micro-scale processes allowing reconnection to fully
couple to the larger (ion) scales.

The value of
∫
d3r[sM (~r, t)−s(~r, t)] is shown in units of kB as a function of time t in panel (d).

The values for ions, electrons, and total are close to zero for t < 20 Ω−1
ci since the distributions

are initially Maxwellian. When reconnection begins in earnest at t = 20 Ω−1
ci , the integrals

start to increase, which means the velocity distributions start to become non-Maxwellian during
reconnection. The difference between electrons and ions shows that electrons become non-
Maxwellian earlier than ions when reconnection begins, which is consistent with the discussion
of panel (b) and is reasonable because electrons are more easily influenced by the reconnection
process due to their small mass. The ion distributions become more non-Maxwellian at later
times, probably due to the much larger non-adiabatic-motion regions than electrons. Note that
the different initial temperatures for electrons and ions could lead to different magnitudes of∫
d3r[sM (~r, t)− s(~r, t)].
Panel (e) shows the resultant effective collision frequency νeff(t) calculated from Eq. (10) as

a function of time t for electrons (red), ions (blue), and total (black) in units of Ωci. Up until
t = 20 Ω−1

ci , νeff is the ratio of two small numbers so there are large spurious spikes around
the expected value near zero; this time period should be ignored. After reconnection starts in
earnest around t = 20 Ω−1

ci , the results are relatively smooth. The approximate values of νeff in
the relatively steady phase (t = 33 − 41 Ω−1

ci ) are 0.12 Ωci for electrons, 0.05 Ωci for ions, and
0.07 Ωci for the total.

3.2. Uncertainty of Kinetic Entropy Diagnostic
Assessing the uncertainty of kinetic entropy as measured numerically in a PIC simulation requires
comparing simulation results with different velocity space grids ∆v. One aspect of this was
carried out in Study 1, where the total kinetic entropy S was compared for different ∆v. Since
the kinetic entropy is not explicitly evolved in the PIC evolution equations, the simulations with
different velocity space grids behave identically in terms of particle trajectories, velocities, and
electromagnetic fields; the only difference is the way in which the kinetic entropy is evaluated.
The results from that study are reproduced in Fig. 2.

Panel (a) shows the total initial electron (black) and ion (blue) kinetic entropy S(t = 0)
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Figure 2. Kinetic entropy S for
electrons (black) and ions (blue) in
seven simulations with ∆v/vA =
0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 (a)
at t = 0 and (b) at t = 40 Ω−1

ci .
The dashed lines in (a) indicate the
analytical values at t = 0 for elec-
trons (black) and ions (blue). Re-
produced from Liang et al., Phys.
Plasmas 26, 082903 (2019), with
the permission of AIP Publishing.

in units of kB as a function of ∆v in units of vA, where vA is the Alfvén speed based on B0

and the initial current sheet density. The simulation from Study 1 is initialized with drifting
Maxwellian distributions everywhere in space, so the numerically calculated kinetic entropy at
t = 0 was verified by comparing it with analytical expressions of kinetic entropy for Maxwellian
distributions. These values are shown as the horizontal dashed lines in panel (a). This method
was used to identify an optimal ∆v for the kinetic entropy calculation, at least at t = 0. It was
found that for both electrons and ions, the velocity space grid giving the best agreement with
the analytical calculation is near the species thermal speed.

As mentioned in the introduction and in Study 1, validating the entropy calculation at t = 0
does not ensure the selected velocity space grid size is appropriate at later times. Panel (b)
shows an analogous plot as panel (a), but at t = 40 Ω−1

ci near the end of the simulation. The
overall trend in S with varying ∆v is similar to that at t = 0, but there is no direct way to
assess if the velocity space resolution remains sufficient.

Here, we examine the effect of the velocity space grid, but using a locally measured
distribution function instead of the total kinetic entropy found from integrating over the whole
domain. To do so, we assess the velocity space grid dependence on the most non-Maxwellian
distribution at late times (t = 41 Ω−1

ci in the simulation); this presumably provides the upper
limit of the uncertainty for the kinetic entropy calculation.

For the simulation in Study 1, the most non-Maxwellian distribution, i.e., the ~r location where
sM (~r, t) − s(~r, t) is a maximum, occurs at the X-point at late time. Physically, it is associated
with electron meandering orbits, such as those displayed in Fig. 4 of Ref. [64]. Its projection is
shown in the vx − vy plane in Fig. 3(h). This distribution function has sharp structure in the
vz direction (not shown) and therefore should be the hardest to resolve in velocity space, so the
uncertainty of its kinetic entropy density should be the greatest.

We calculate the electron kinetic entropy density se for this local distribution function as a
function of velocity space grid ∆v. The results are shown in Fig. 3(a), which represents the
local counterpart to the global result in Fig. 2. The black curve is for t = 0 for a Maxwellian
distribution in the upstream region, while the blue curve is for the distribution at the X-point at
t = 41 Ω−1

ci . As for the global measure, there is a medium range denoted by the blue and black
rectangles between about 0.5 vA and 2 vA where the kinetic entropy of the Maxwellian plasma
is not strongly dependent on the velocity space grid. The analytical value of the kinetic entropy
for this case is shown as the horizontal red dashed line. The uncertainty in the kinetic entropy
density as a result of the velocity space grid within this range is approximately 15%, in spite
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Figure 3. Velocity space grid
dependence of local distribution
functions. (a) Electron entropy
density se as a function of velocity
space grid ∆v normalized to the
Alfvén speed vA. The black curve
is se evaluated in the upstream re-
gion at t = 0. The blue curve is se
at the X-point at t = 41 Ω−1

ci . The
red dashed line is the theoretical
se upstream at t = 0. (b) Electron
entropy density se as a function
of the normal direction y in a cut
across the X-point. Different colors
indicate different velocity space
grid ∆v. The black curve is cal-
culated with the selected velocity
space grid ∆v = vA ' 0.69vth,e.
(c)-(h) Reduced electron velocity
distribution functions in the vx−vy
plane at x − x0 = 0 and y − y0 =
−4.7,−3.7,−2.7,−1.7,−0.7, 0.0di =
vA/Ωci, denoted by the blue verti-
cal dashed lines in panel (b), where
the X-point location is (x0, y0).

of the fact that the late time distribution function has structures in velocity space that are not
likely being completely resolved. For comparison, the change in the kinetic entropy between t
= 0 and t = 41 Ω−1

ci is approximately a factor of 2, from about 1.3 far upstream of the current
sheet at t = 0 to about 0.7 for the meandering electrons at the X-point at t = 41 Ω−1

ci . The
15% uncertainty introduced by the velocity space grid resolution is considerably smaller than
the physical change in kinetic entropy value of nearly a factor of 2, so this level of uncertainty
is likely to often be sufficient to resolve physical changes in kinetic entropy.

We repeat this procedure for other distributions. Namely, we calculate the electron kinetic
entropy density se along a slice in the inflow (y) direction through the X-point located at y0

at t = 41 Ω−1
ci , and plot the result as a function of velocity space grid ∆v in Fig. 3(b). Six

corresponding electron distribution functions at the locations marked by blue dashed lines in
panel (b) are plotted in Figs. 3(c)-(h). Far upstream in panels (c) and (d), the distribution
functions are close to Maxwellian, as expected. Closer to the X-point in panels (e), (f) and
(g), the distribution functions are elongated along the local magnetic field direction, consistent
with the trapped electron distributions discussed by Egedal and colleagues (e.g., [65]). At the
X-point in panel (h), as mentioned previously, the distribution function shows signatures of
meandering motion. Even though these six distribution functions are very different, the selected
velocity space grid ∆v = 1 vA ' 0.69 vth,e is in a medium range where the kinetic entropy is not
strongly dependent on the velocity space grid, as shown in panel (b). The uncertainty at other
locations is smaller than that at the X-point, as expected. This local analysis suggests that
the velocity space grid resolution introduces ' 15% error in entropy calculated at later times
when distribution functions can be strongly non-Maxwellian, but this error is smaller than the
physical changes to the kinetic entropy, at least for the simulation study presented here.
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4. Conclusions
In this study, we have investigated numerical aspects of the calculation of kinetic entropy in a
collisionless particle-in-cell simulation. In Study 1 [46], it was shown that numerical effects led to
the monotonic increase in measured kinetic entropy, which reproduces this important property of
a physical collision operator. Here, assuming a relaxation time collision operator of Bhatnagar-
Gross-Krook type that is local in space and time, we derive a relation between the numerical
kinetic entropy time rate of change and the effective collision frequency. Calculating the kinetic
entropy in the simulation then allows one to calculate the effective collision frequency in the
collisionless PIC simulation. For the simulation in Study 1, the effective collision frequency is
' 0.1 Ωci.

This is an important step for future investigations of physical dissipation in PIC simulations.
In particular, this approach allows one to estimate the effective collision frequency, so that one
knows approximately how strong a physical collision operator has to be in order to overcome
numerical effects. Modeling real collisions in PIC simulations requires the implementation of a
physical collision operator into one’s PIC code, as has been carried out previously (e.g., [66, 67]).

This result raises important questions about the fidelity of collisionless PIC simulations.
The simulation in Study 1, which was optimized with smaller than usual time step and spatial
grid scale and a reasonably high number of macro-particles per grid, had an effective collision
frequency of 0.1 Ωci. This suggests that even a well-optimized collisionless PIC simulation carried
out for hundreds of ion cyclotron times could have numerical dissipation play a significant role
in the dynamical evolution of the system as particles effectively undergo numerous effective
collisions. The situation would be even worse for simulations with fewer macro-particles per
grid. On the other hand, macro-particles likely spend only a small amount of time in regions for
which numerical collisionality is expected to be important, so it is possible that the dynamical
effect of effective collisions is small. The excellent agreement between simulated distribution
functions and in situ satellite observations of magnetic reconnection (e.g., [68]) also suggests
that the effect of numerical collisions is not likely very significant, but it is not clear this would
be the case for a long duration simulation of a turbulent system or for collisionless shocks. Future
work on this topic would be beneficial.

We also stress that the effective collision operator should not be overly interpreted as a
physical collision process. We have not attempted to check if the evolution of distribution
functions evolve according to the chosen collision operator, and in fact we expect a hypothetical
collision operator mimicking the numerical effects would be much more complicated than the
relaxation time approximation. Rather, the approach here is intended to merely be an effective
model of the kinetic entropy increase due to numerical effects, especially in collisionless PIC
simulations, and should be interpreted with the same caution as estimates of the effective
numerical resistivity in magnetohydrodynamics (MHD) simulations.

While we stress that interpreting the numerical effective collision frequency too strictly is
not appropriate, we believe it is instructive to estimate what the effective collision frequency we
obtain corresponds to in physical systems of interest. For a typical solar active region magnetic
field of 100 G the effective collision frequency from this simulation is ' 106 Ωci, while for a
typical dayside magnetopause magnetic field of 40 nT it is 4 Ωci. The actual (Spitzer) collision
frequencies in these settings are ' 6×10−8 Ωci and 10−15 Ωci, respectively. The effective collision
frequency in the PIC simulations is, of course, far larger than the realistic values as expected,
exemplifying how extremely rare collisions are in these systems. However, the estimated PIC
effective collision frequency is orders of magnitude smaller than that in global magnetospheric
MHD simulations, e.g., ' 3× 1011 Ωci in Ref. [54], as expected.

A second activity of the present study is to assess the uncertainty of the kinetic entropy
calculation in PIC simulations. Study 1 had shown that a velocity space grid close to the
species thermal speed was sufficient to be close to the analytical predictions for a plasma with
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exclusively Maxwellian distributions, but did not address the accuracy of the kinetic calculations
as distributions evolve in time away from Maxwellians. Here, we confirm that kinetic entropy
measurements are extremely sensitive to the velocity space grid if it is too large or too small,
but there is a range around the thermal speed where the kinetic entropy is not so sensitive to
the velocity space grid. Moreover, the changes in kinetic entropy measured in this range vary
by approximately 15%, while the physical changes in kinetic entropy of a plasma going from the
upstream region to the current sheet region were comparable to a factor of 2. We conclude a
velocity space grid comparable to the thermal speed is sufficient to resolve physical changes to
the kinetic entropy, at least for the simulation in Study 1.

There are many avenues for future work on these matters. For the estimate of the effective
collision frequency, dependence on numerical quantities including time step, spatial grid scale,
velocity space grid, macro-particles per grid, and speed of light would be useful. It would
be interesting to use a PIC code with a physical collision operator to compare the effective
collision frequency derived by the method used here with the physical value. Studies of more
complicated systems than the basic magnetic reconnection simulation considered here, including
plasma turbulence and shocks, would also be interesting. The dependence on velocity space grid
should also be investigated as a function of the same numerical parameters and in different
settings.
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