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Abstract. The standard fatigue estimation procedure is implemented in Model Predictive
Control via externalization of the Rainflow algorithm from the optimization problem.
Additionally, stress history is considered in a consistent manner by employing a so-called stress
residue. The formulation is implemented in the state-of-the-art MPC framework acados and
tested in closed-loop with the 5MW onshore turbine in OpenFAST. Simulation results indicate
that the new formulation outperforms conventional PID- and MPC-controllers over the entire
wind regime, and that the consideration of stress history is highly beneficial.

1. Introduction
Fatigue is damage of a material caused by cyclic application of mechanical stress. For wind
turbines, fatigue has large impact on lifetime e.g. of tower, blades and drivetrain, and is a
main design driver. Model Predictive Controllers (MPC) enable optimal control of turbines by
utilizing predictions of incoming wind by a Light detection and ranging (Lidar) device [1, 2].
Based on these input predictions, stress time series at crucial spots in the turbine structure can
be predicted. Rainflow-counting (RFC) is the standard method for the decomposition of stress
time series for fatigue estimation. Until recently, RFC could not be implemented in MPC [3]
and could only be used for post-processing of measured and simulated data. In [4], a MPC
formulation was presented that allows for the externalization of the RFC evaluation from the
MPC algorithm, and the inclusion of its results into the MPC via time-varying parameters.
Therefore, this formulation is referred to as Parametric Online Rainflow-counting (PORFC).
PORFC allows for the direct incorporation of monetary fatigue in the cost function of MPC,
and thus for a true economic balancing with revenue from generated electricity.

In PORFC, fatigue is calculated based on stress information from the prediction horizon
of the MPC, which is in the order of a few seconds. However, fatigue is a long-term effect
where stress cycles are usually defined on much longer time spans. Therefore in [5] a systematic
incorporation of historic stress samples (”residue”) into the fatigue cost calculation of MPC was
presented. In [4] and [5], these novel formulations were introduced in detail, but only preliminary
closed-loop simulations were presented.

The main goal of the present work is to more thoroughly assess PORFC including stress
history. Therefore, this paper is organized as follows. In Sec. 2, the phenomenon of fatigue and
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cycle identification are assessed. This analysis is the basis for an application-focused description
of PORFC in Sec. 3. In Sec. 4, aeroelastic simulations over the full range of turbulent wind
conditions are carried out. Furthermore, PORFC is compared to a common MPC formulation
from the literature and to a conventional controller.

2. Assessment of fatigue estimation
2.1. Definition of fatigue
In the following, the phenomenon of fatigue is defined for conditions and assumptions that
apply to the wind energy domain: mechanical fatigue, normal ambient temperatures, neglection
of irreversible strain effects and invariance w.r.t. time. In this setting, fatigue is damage of
a material caused by cyclic application of mechanical stress. Without loss of information,
the fatigue impact of a given stress-trajectory can be analyzed solely based on its extrema
or ”reversals”. This implies that the shape and contained frequencies of the original continuous
stress trajectory are considered to be irrelevant for fatigue estimation [6]. Therefore, the fatigue
impact of such a reversal sequence is fully determined by its contained individual stress cycles.
Each stress cycle can be represented by a cosine function. A stress trajectory typically contains
full cycles, which are cosines of a full period, and half cycles, which are cosines of only a half
period. Half cycles therefore represent either a rising or falling transient. Instead of storing
three (full cycle) or two (half cycle) stress samples, it is common to store two stress samples and
a weight, which is valued wc = 1 (full cycle) or wc = 0.5 (half cycle). The two stress samples
can be the cycle stress maximum and minimum, or the stress amplitude σa,c and mean σm,c.
Instead of stress amplitude, stress range σr,c = 2σa,c is frequently used as well.

Typically, fatigue impact of a stress cycle mainly correlates with its stress amplitude:
a positive stress mean increases and a negative stress mean decreases fatigue impact.
Quantitatively, this mean stress effect is expressed by the Goodman equation [7] (p. 184)
which leads to the equivalent stress σeq,c. Consequently, equivalent stress is used to calculate
the number of cycles to failure

Nc = f−1
SN (σeq,c) (1)

via the inverse S-N or ”Woehler” curve, which typically has a piecewise definition over the
stress-axis. Fatigue damage of a given stress cycle Dfatigue,c = 1/Nc is obtained by the reciprocal
of the number of cycles to failure. Total damage of the given stress-trajectory is obtained by
linear accumulation Dfatigue =

∑
cDfatigue,c of damages of individual stress cycles according to

the Miner-Palmgren-Rule [8].

2.2. Cycle identification via the Rainflow algorithm
Cycle identification is straightforward if, e.g., a simple sinusoid is analysed. There, amplitudes,
mean values and number of cycles are obvious. However, realistic stress trajectories usually are
highly complex and contain stress cycles that can be nested (”nested cycles”). Additionally,
half and full cycles can be present, as stated above. The most widely accepted algorithm for
cycle identification from complex trajectories is the Rainflow(-counting) algorithm (RFC) [9].
A flowchart of the Rainflow algorithm is displayed in Fig. 1.

At the beginning of the algorithm, RFC receives as input a stress trajectory and extracts
its reversals (extrema). Throughout the algorithm, reversals are read consecutively from left
to right. Each new reversal is stored in an operational memory. From this memory, cycles are
identified based on a triplet of reversals. The Rainflow algorithm contains four main loops.
Loop 1 initiates the reading of a new reversal sample, if less than three reversals are in the
operational memory. Loop 2 initiates the reading of a new reversal if, based on the current
operational memory, no cycle could be identified. Loop 3 and Loop 4 initiate the subsequent
check for a cycle in the current operational memory and are triggered after identification of a
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Figure 1. Flowchart of the
MATLAB-implementation
rainflow() of the Three-
point algorithm (simplified
from [10]). Stress extrema are
called ”reversals”. The range
r(X) = |X(2) − X(1)| of a stress
value pair X is the absolute value
of the difference between both
stresses.

half or full cycle, respectively. A more comprehensive explanation of the algorithm can be found
in [10].

As shown above, the Rainflow algorithm contains algorithmic branches and loops. Thus, a
crucial property of the Rainflow algorithm is its discontinuous output behavior. Furthermore,
the number Nc of identified cycles is not known before execution, but bounded by the number
of extrema.

The characteristics of the identified cycles that are output by RFC for each cycle c are stress
range σr,c [Pa], stress mean σm,c [Pa], sample index of cycle start kstart,c [-], sample index of
cycle end kend,c [-] and cycle weight wc[−]. In the present work, these characteristics will be
used in a converted form of stress amplitude σa,c [Pa], stress mean σm,c [Pa], sample index of
cycle maximum kmax,c [-], sample index of cycle minimum kmin,c [-] and cycle weight wc[−].

2.3. Temporal range of cycle amplitudes and damage
It is important to note that stress cycles are not only caused by instantaneous oscillations, but
also by long-term changes of deflection. This phenomenon is expressed by so-called transition
cycles which grow over a long period of time and can reach high stress amplitudes with a
dominating fatigue impact [11]. Since transition cycles, by definition, have not been closed yet,
they appear as half cycles in the Rainflow analysis. In the wind turbine context, transition cycles
are caused, e.g., by long-term evolution of mean wind velocity and can span across the turbulent
and intra-day range (O(10s) to O(1day)). For the example of the turbine tower, a cycle can
reach from turbine start-up (beginning of positive deflection) until shutdown (return to vertical
orientation). To gain a quantitative impression of this long-term impact, in the following, an
exemplary 620s tower base stress trajectory from a DLC 1.2 simulation is analyzed w.r.t. period
time of contained stress cycles.

For the following analysis, the Rainflow cycles are binned w.r.t. their period time, and their
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amplitudes σa,i within the respective bins are summed. This is done according to

fRF(Ti) =
∑
i

σa,i ∀i| Ti ≤ tend,i − tstart,i < Ti + ∆T, (2)

where Ti are discrete period times, ∆T = 0.005s is the chosen bin size, and (tstart,i, tend,i) denote
start and end time of a cycle, respectively. The resulting trajectory fRF(T ) is called ”Rainflow
spectrum” in the following.

For comparison, the amplitude spectrum for the same stress trajectory is calculated by a Fast
Fourier Transform (”Fourier spectrum”). Both spectra are cumulated over time and normalized
w.r.t. their end value. As shown in Fig. 2, the cumulative Rainflow spectrum is lower than the
cumulative Fourier spectrum for low period times because, for the former, open stress cycles
are not closed when they are interrupted by nested cycles. Instead, an open cycle is continued
after closing of a nested cycle and can grow into a larger cycle with longer period time. This
translates into a higher amplitude spectrum at higher period times for the cumulated Rainflow
spectrum.

Consequently, for each bin, damage is calculated based on the output of the Rainflow analysis.
Damage is as well cumulated over period time and normalized w.r.t. its end value, as shown in
Fig. 3. The following properties of the cumulative damage trajectory are worth mentioning:

• Damage remains close to zero until period times of T = 3s, which is close to the first fore-aft
eigenfrequency of the turbine tower. In this set, only low-amplitude cycles are present. Due
to the superlinear nature of the damage function, these cycles only cause minor damage.

• For analysis windows of about T = 4s, already cycles with a 40% damage-equivalent effect
can be seen entirely within the window.

• Analysis windows of more than T = 20s would be necessary to see cycles with a 80%
damage-equivalent effect within the window.
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Figure 2. Normalized cumulative amplitude
spectrum obtained via the Rainflow algorithm
and a Fourier transformation, respectively.
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Figure 3. Normalized cumulative fatigue
damage obtained via the Rainflow algorithm.

2.4. Batchwise cycle identification & residue
As demonstrated in Sec. 2.3, wind turbine stress trajectories can contain long-term cycles. Thus,
the Rainflow analysis has to be carried out over the entire length of an available stress trajectory.
For offline purposes, this mode is perfectly adequate. However, for online monitoring and control,
a complete Rainflow analysis for each newly measured stress sample is computationally infeasible.
As a solution, in [12] it is shown that Rainflow analysis also can be performed batchwise if a
so-called residue is used for carrying along the half-cycle stress samples. Residue, therefore,
denotes a set of stress samples that occured in the past and have not formed full cycles as yet.
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Figure 4. Left: Indirect fatigue metric. Right: Direct fatigue metric.

Depending on the stress signal, a high number of samples can be accumulated in the residue.
The highest possible dimensions of the residue vector result from diverging and converging stress
time series, because they result in a very high number of half cycles [13]. However, long-term
diverging series are unrealistic, because unstable machine behavior typically is counteracted
by the controller or an emergency shutdown. Long-term converging series are irrelevant, since
very low-amplitude cycles can be discarded without significant errors in fatigue estimation. To
conclude, the dimension Nres of the residue vector is finite and remained well below 100 in
practical tests [5].

3. Fatigue in Model Predictive Control of wind turbines
Wind turbine tower base fatigue usually is implemented in MPC within the cost function.
Common cost types in MPC are Stage cost and Terminal cost. Stage costs comprise a summation
of state samples or a time integral of state trajectories over the prediction horizon, and are
preferred for the present application. Terminal costs are defined as a function of the sole state
samples at the end of the prediction horizon [14].

3.1. Indirect fatigue metrics in MPC
Several approaches reported in the literature involve indirect fatigue metrics [3], [15], [16].
However, indirect fatigue metrics have two main disadvantages:

• Instead of actual damage, only a damage-related value is obtained and optimized, as
illustrated in Fig. 4.

• Indirect fatigue terms have different units from harvested energy. Thus, weighting both
terms in the cost function is not straightforward.

The most common approach involves quadratic penalization of tower tip deflection rate ḋT .
This also can be interpreted as a penalization of kinetic energy of the lumped tower mass mT ,
averaged over the prediction horizon Thorizon. In the present work, therefore, the stage cost

Jfatigue,TTV P =

∫ tend

t0

1

2ThorizonPg,max
mT ḋ

2
Tdt (3)

is used for comparison and referred to as Tower tip velocity penalization (TTVP). An additional
division by rated power Pg,max is used for scaling the cost, which is beneficial for optimization.

3.2. Direct fatigue metrics in MPC
In contrast to indirect fatigue metrics, direct fatigue metrics return actual damage, which can be
readily converted to monetary fatigue cost, as visualized in Fig. 4. This conversion is achieved
for instance by multiplication with Initial Capital Cost of the respective component or the
entire turbine. Since harvested energy also can be converted to revenue by electricity price, the
optimization algorithm can directly maximize profit.
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As shown in Sec. 2, direct fatigue estimation involves the Rainflow algorithm.
Implementation of RFC within a gradient-based optimization seemed impossible until now due
to following obstacles:

• RFC is a function of all stress samples. Therefore, neither the concept of stage nor of
terminal cost applies.

• RFC contains branches. Therefore, it exhibits discontinuous outputs and is not continuously
differentiable.

• RFC contains ”while” loops, which lead to a changing function execution structure
depending on the stress input.

Thus, in all known references, the Rainflow algorithm is approximated to some extent. In
[17], a version of Simple Range Counting is applied, which is standardized in [9]. In [6], hysteresis
operators are used to adapt parameters of a cost function in MPC. This cost function penalizes
deflection rates, comparable to TTVP. In [18], damage estimation including standard RFC is
performed on a large number of stress time series which are used to train a surrogate Artificial
Neural Network. The latter seems to be very promising in terms of correct damage estimation.
However, the approach involves a high a priori engineering effort, as well as a significantly
increased computational load in the MPC [18].

Stress history is not included in any of these approaches. In [6], the hysteresis operators only
have memory of damage evolution. Similarly, in [18], only the previous fatigue rate output of
the ANN is memorized until the next evaluation.

3.3. Parametric Online Rainflow-counting - Concept
The above mentioned obstacles for a direct implementation of RFC in MPC are overcome by the
method of Parametric Online Rainflow-counting (PORFC). In PORFC, all discontinuous parts
of the fatigue estimation procedure are carried out before each execution of the MPC algorithm,
as shown in Fig. 5. Additionally, the stress history is incorporated via a residue which is inspired
by the batchwise cycle identification in Sec. 2.4. The algorithmic workflow is as follows:

• Simulation: The reduced wind turbine model is simulated over the prediction horizon
using the current measured states as initial values. Relevant result is a stress prediction, as
visualized in Fig. 6 (right).

• Merge: The residue is merged with the stress prediction.

• Rainflow: The Rainflow algorithm is used to identify stress cycles over this merged
trajectory. Consequently, it is assumed that the structure of identified cycles does not
change within the upcoming optimization run. The term ”structure” denotes here positions
(kmin,c, kmax,c) and weights (wc) of cycles. As shown in Fig. 6, this assumption implies
that the controllable extrema in the prediction horizon only can be shifted vertically by the
optimization.

• Residue update: Stress cycles can be composed by stress samples only from residue or
prediction, or by a combination of both. However, only controllable samples within the
prediction horizon can be altered by the optimization. Especially the measured initial value
at prediction step 0 cannot be altered and, therefore, is added to the residue. If a full
cycle is detected entirely within the residue, both contributing values are discarded from
the residue. The reason for this is that also in the future they will never anymore form a
cycle with a sample from the prediction and, therefore, are irrelevant for the MPC.

• Time-varying parameters: Information from cycle identification is used to fill vectors of
time-varying parameters, which are forwarded to the cost function of the MPC. Details on
this step are provided in Sec. 3.4.
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Figure 5. Externalization of fatigue estimation (Rainflow algorithm) from MPC.
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Figure 6. Left: Stress residue from the past. Right: Stress prediction in the future.

• Optimization/MPC: In the cost function of the MPC, the parameters are used to time-
continuously calculate fatigue cost over the horizon and accumulate it via integration.
Finally, the optimization problem is solved and the resulting control variables are applied
to the wind turbine plant.

3.4. Parametric Online Rainflow-counting - Time-varying parameters & cost function
Distribution of damage over time: Since information from cycle identification is

forwarded to the MPC via parameters, which are varying over the prediction horizon, the total
fatigue damage has to be distributed over the prediction horizon, as visualized in Fig. 7 (right).
Therefore, the damage of each stress cycle is split into two halves, which are allocated to the
two contributing stress samples. For example, cycle 4 is formed by samples k = 5 and k = 8.
Their fatigue cost terms therefore are allocated to these samples, as shown by the blocks in
Fig. 7 (right). This example also shows an important property of the Rainflow algorithm,
which identifies cycle 4 even though it is interrupted by the nested cycle 2. If, for a given
stress sample, the complementary stress sample is not controllable (residue or initial value), all
damage is allocated to the given sample. Here, this is the case for cycle one, where all damage
is allocated to sample k = 2 since the complementary stress sample at k = 0 is not controllable.

Setup of the time-varying parameters: Figure 7 (left) visualizes the generation of the
time-varying parameters. Since each stress extremum belongs to one or two stress cycles [19],
the Rainflow algorithm provides one or two mean stresses per extremum. These mean stresses
(M1 - M4) are considered as optimization- or tracking-goals for the current MPC-step. A more
detailed derivation and explanation can be found in [4].

Cost function: Consequently, the fatigue cost term of PORFC is defined. One comment on
notation: the variable notation with hat â means fixed for one MPC-step and with bar ā means
sampled on the control intervals of the prediction horizon.
The fatigue cost function is defined by an integral over two cost terms, each one representing
one potential cycle contribution of a stress sample, i.e.:

Jfatigue,PORFC (σ, p̄) =

1

Tcntrl

∫ tend

t0

(
Jfatigue,c(σ(t), ˆ̄σm,c1(t), ˆ̄wc1(t)) + Jfatigue,c(σ(t), ˆ̄σm,c2(t), ˆ̄wc2(t))

)
dt [e]. (4)

The cost terms are ”switched on” by nonzero cycle weights ˆ̄wc1/2(t). Mean stresses ˆ̄σm,c1/2(t)
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arrows) for PORFC. Right: Corresponding distribution of damage over the prediction horizon.
Both figures are modified from [20].

and cycle weights ˆ̄wc1/2(t) are collected in the parameter vector

p̄ =
(
ˆ̄σm,c1, ˆ̄σm,c2, ˆ̄wc1, ˆ̄wc2

)
, (5)

which is defined as piecewise constant over the control intervals of the prediction horizon. The
cost of individual cycles is defined by

Jfatigue,c = ˆ̄wc1/2(t) am |σ(t)− ˆ̄σm,c1/2(t)|m. (6)

3.5. Optimization problem for TTVP and PORFC
The Economic MPC of a wind turbine is defined by the following optimization problem

min
ū,̄s

(
−αrevenueJrevenue + αfatigueJfatigue +

∫ tend

t0

(
10−2|β̇b|+ 107 s̄2ω + 107 s̄2P

)
dt

)
, (7)

which maximizes the revenue Jrevenue and minimizes the fatigue Jfatigue,PORFC, where αrevenue

and αfatigue are weighting factors. Instead of generator power, aerodynamic power is maximized
by Jrevenue = ωr Tw(ωr, Vrel, βb) to avoid a greedy extraction of rotor kinetic energy by the MPC
(turnpike effect), as suggested by [15]. Furthermore, pitch travel |β̇b|, and slack variables for
rotational speed s̄ω and generator power s̄P are penalized (see their use in the constraints below).

The optimization variables are the demanded pitch angle and torque rate ū = (β̄b,d,
¯̇Tg,d), and

the slack variables s̄ = (̄sω, s̄P ).
For both TTVP and PORFC, revenue is weighted by the current electricity price

αrevenue,PORFC = pelec [e/Ws] to match the monetary nature of (4). The fatigue weight remains
free and will be determined later in this work.

The optimization problem is subject to:

• The system dynamics of a reduced turbine model ẋ = F (x(t),u(t),d(t)) with six states:
rotational speed of the rotor, tower tip deflection, tower tip velocity, pitch angle, pitch rate
and generator torque. More details about the model are given in [21].

• Inequality constraints over the horizon, to keep rotational speed, tower deflection (yield
strength), pitch angle, pitch rate, generator torque and generator power within their
limits. In order to maintain feasibility of the optimization despite model uncertainties
and spontaneous constraint violations, the constraints on rotational speed and generator
power are augmented by slack variables, as suggested by [22].

• Box constraints on control and slack variables.
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4. Simulation setup and results
4.1. Simulation setup

Plant model: The designed MPC formulations are tested with the NREL 5MW onshore
reference turbine [23] in the aeroelastic simulator OpenFAST. The present preliminary study is
focused on assessment of the formulations in ideal conditions. Therefore, exact measurements of
the required turbine states are provided to the MPC. Furthermore, in OpenFAST, only the tower
fore-aft and the rotor Degree of Freedom (DOF) are activated. Future work will be directed
to extending the MPC-internal turbine model and finally enabling all DOFs in OpenFAST. All
results in this work are mean values of 12 simulations (each with a different seed) of 600s length
in DLC 1.2 with turbulence category A.

Lidar model: The Lidar-simulator of OpenFAST is used and set to provide exact pointwise
wind measurements. These measurements are obtained via circular scan patterns of four different
radii r = {0.2, 0.4, 0.6, 0.8}Rrotor which are applied in alternating fashion. For each radius, 20
azimuthal stops are distributed equally (every 18 degrees). Inspired by [2], each measurement is
weighted by the cubic of the scanning radius, since the associated area increases quadratically,

and the stationary spanwise variation
∂Cp

∂r of the power coefficient increases approximately
linearly with the scanning radius. Every 5 ms a new wind sample is obtained. Due to vertical
wind shear, this raw wind prediction signal oscillates, an effect which is counteracted by applying
a moving mean filter, whose window length corresponds to two full scans over all radii and
azimuths. The longitudinal scanning distance is set to xscan = Vw,ref Thorizon, where Vw,ref is
the reference wind velocity of a given DLC, and Thorizon = 8s is the horizon length of the MPC.
This value for the horizon length was chosen based on the findings in Sec. 2.3 which indicate,
that cycles of at least 60% of damage-equivalent effect will be contained in the controllable
prediction horizon.

MPC framework: The MPC is implemented in the state-of-the-art acados framework
[24], using the interior-point solver HPIPM for the underlying Quadratic Programs (QP). The
controller sample time is 100 ms. Maximum 5 QPs are solved per MPC step to ensure results
close to convergence. The Hessian matrix is automatically convexified to account for possible
numerical issues due to the highly non-standard cost formulation of PORFC.

Controller variants: In the following, performance of five MPC formulations and the
baseline conventional controller (CC) from NREL [23] are compared. The MPCs involve the
conventional formulation of Tower tip velocity penalization (TTVP, Sec. 3.1) and the novel
formulation of Parametric Online Rainflow-counting (PORFC, Sec. 3.3). For PORFC, a fatigue
exponent of m = 5 (see (6)) is used, which is present at low stress amplitudes in the actual S-N-
curve of the tower material. This case is assessed in combination with (PORFC-5R) and without
(PORFC-5) the use of residue. Since especially PORFC-5R will not lead to satisfactory results,
additional formulations (PORFC-2R, PORFC-2) with fatigue exponent m = 2 are assessed
which result in quadratic cost functions, and thus are more suitable for Quadratic Programming.

Performance indicators: Considered performance indicators are revenue (analog to
energy), fatigue cost (based on a realistic piecewise defined S-N-curve, see Sec. 2.1), profit
(revenue subtracted by fatigue cost), pitch travel and torque travel.

4.2. Simulation results for weight variation
As shown in Sec. 3.5, the fatigue weight αfatigue is a free tuning variable. In contrast to the
Online-Rainflow MPC setup in [25], in the present setup a choice of αfatigue = 1 does not seem to
result in maximum profit. One reason is the additional presence of non-monetary cost terms next
to revenue and fatigue in the MPC cost function (7). Another reason may be the approximating
nature of PORFC, where fatigue is distributed over and decoupled in time (see Sec. 3.4).

For the purpose of weight-tuning, Fig. 8 shows results for variations of fatigue weight for
all MPC setups and a reference wind velocity of 7 m/s. This wind velocity was chosen, since
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Figure 8. Variation of fatigue weights. Vertical dashed lines: location of profit-optimal weights.
Middle row, right: Zoomed version of profit plot.

it is close to the mean annual wind velocity for the given hub height and an onshore site.
Profit-optimality is the prime goal and achieved by the following weights: 104 (TTVP), 4 · 10−2

(PORFC-2), 2 · 10−2 (PORFC-2R), 7 · 10−2 (PORFC-5) and 10−2 (PORFC-5R).
For very low fatigue weights, all MPCs (TTVP, PORFC) are able to achieve similar revenue

that, however, is about 1% lower than the revenue of CC. The investigation of reasons for this
behavior is part of ongoing research. With increasing weights, revenue is sacrificed to reduce
fatigue cost. For all MPCs, the major drop in fatigue cost appears for lower weights than the
drop of revenue. As a result, pronounced peaks in profit are visible. Optimum profit of TTVP
is 6.2% higher than the profit of CC. The profit-peaks of PORFC-2, -2R and -5 are at almost
equal levels and about 8.6% higher than the profit of CC. Unfortunately, the performance of
PORFC-5R is slightly deteriorated, but still higher than the one of TTVP.

Width of the profit-peaks is suggested as an indicator for robustness of tuning. Width, e.g.,
can be measured by the weight range where profit is above a certain threshold, which here is
defined as 95% of the individual maximum profit. In the present case, width is half an order
of magnitude for TTVP, almost one order of magnitude for PORFC-2(R) and PORFC-5R,
and substantially more than one order of magnitude for PORFC-5. To conclude, PORFC-5 is
considered as the most robust against inaccurate tuning.

4.3. Simulation results for velocity variation
As a next step, the above-presented profit-optimal fatigue weights are fixed and the controllers
are applied to a comprehensive range of reference wind velocities. The results are normalized
w.r.t. TTVP and are presented in Fig. 9. Strikingly, all MPCs are extracting significantly
less energy than CC at low wind velocities. Just like in [2], this is due to the MPCs’ strategy
of reducing fatigue via significantly decreasing rotor speed. Above rated wind velocity, the
MPCs result in about 1% higher revenue than CC. An exception is PORFC-5R, which performs
unreliably over the wind regime and is excluded from the remaining analysis.
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Figure 9. Variation of reference wind velocities. All resulting quantities are normalized w.r.t.
the MPC using TTVP. Middle row, right: Zoomed version of profit plot.

TTVP exhibits between 14% (9m/s) and 98% (5m/s) less fatigue cost than CC. This is further
improved by PORFC-5, which exhibits between 2% (7m/s) and 68% (21m/s) less fatigue cost
than TTVP. As a result, the MPCs generally exhibit higher profit than CC, especially for very
low wind velocity and above rated. Specifically TTVP exhibits between 2.8% (9m/s) and 174%
(5m/s) more profit than CC. The advanced formulations of PORFC add further improvement,
where, e.g., PORFC-5 exhibits up to 7.8% more profit than TTVP. The beneficial effect of
residue can be observed from PORFC-2 to -2R, where significant profit is added for low to
medium wind velocities, while pitch travel is equal or lower.

Pitch activity usually is a main concern for the control of fatigue. Indeed, for low wind
velocities, the MPCs exhibit substantial pitch activity in comparison to almost none for CC.
Above rated, PORFC reliefs the pitch system by about 50-75% in comparison to TTVP, and
almost reaches the low levels of CC.

The deteriorated behavior of PORFC-5R cannot be fully explained yet. It may be caused
by numerical difficulties, which arise from the approximation of the cost function of exponent
m = 5 by a Quadratic Program in the optimization algorithm. This phenomenon may manifest
itself with the use of residue, since here higher (long-term) stress amplitudes are detected which
lie in a steep region of the damage function (6).

5. Conclusion & Outlook
In the present work, the MPC formulation of Parametric Online Rainflow-counting (PORFC)
has been presented in an application-focused way. It has been highlighted how PORFC directly
incorporates mechanical fatigue in predictive wind turbine control. A study on period times of
tower base stress cycles has demonstrated that long observation windows are required to see
cycles with sufficient damage-equivalent effect. As a solution for MPC, which typically is based
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on short prediction horizons, stress history can be considered in a consistent manner by carrying
along a residue. Aeroelastic simulations show that PORFC outperforms conventional PID- and
MPC-controllers in terms of profit over the entire wind regime. Particularly above rated wind
velocity, this is achieved by a moderate amount of extra pitch activity compared to the PID-
controller. Furthermore, a simple test has shown that all variants of PORFC are more robust
against inaccurate tuning compared to the conventional MPC formulation of TTVP.

Future research concerning PORFC will be directed to monetary cost functions for actuator
usage, application with a sophisticated Lidar-simulator, and further assessment of influencing
factors like MPC settings and state uncertainty.
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