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Abstract. Machine learning techniques have been widely used for condition-based monitoring
of wind turbines using Supervisory Control & Acquisition (SCADA) data. However, many
machine learning models, including neural networks, operate as black boxes: despite performing
suitably well as predictive models, they are not able to identify causal associations within
the data. For data-driven system to approach human-level intelligence in generating effective
maintenance strategies, it is integral to discover hidden knowledge in the operational data. In
this paper, we apply deep learning to discover causal relationships between multiple features
(confounders) in SCADA data for faults in various sub-components from an operational turbine
using convolutional neural networks (CNNs) with attention. Our technique overcomes the black
box nature of conventional deep learners and identifies hidden confounders in the data through
the use of temporal causal graphs. We demonstrate the effects of SCADA features on a wind
turbine’s operational status, and show that our technique contributes to explainable AI for wind
energy applications by providing transparent and interpretable decision support.

1. Introduction
With the global increase in carbon emissions caused by conventional sources of energy, there
has been a recent, yet fast paced move towards renewable energy sources [1]. Wind energy will
play an integral role in the energy revolution [2], encouraging research and development in this
domain. Wind turbines are highly complex systems [3] consisting of electrical and mechanical
components that regularly suffer from operational inconsistencies, making Operations and
Maintenance (O&M) challenging, which in turn can cause major costs and downtime [4].

Despite a growing interest in the wind industry in using machine learning for condition-
based monitoring of turbines using Supervisory Control & Acquisition (SCADA) data1 [5], the
key problem with such data is the presence of multiple features which share a common cause
(confounders) and can be hidden within complex and non-linear operational data. Although
neural networks have recently demonstrated high accuracy in predictive maintenance [6], the
black-box nature of such models has limited their ability to support transparent decision making.
Actions, intervention and decisions have important consequences in data-driven decision making
[7], and causal reasoning is an integral step in achieving human-level machine intelligence.
Causal inference has played an important role in applications in medical treatments [8] and

1 SCADA data consists of multiple simultaneous measurements of parameters like operational status of sub-
components, meteorological variables, sensor measurements etc., see Section 3 for details.
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Figure 1. Depiction of the causality learning task.

stock markets [9], e.g. In this vein of research, Wang et al. [10] have previously proposed the
deconfounder, an algorithm which uses probabilistic models for causal inference in real-world
datasets. However, they only model the effects of univariate causes on an outcome and ignore
situations where multiple causes can lead to multiple outcomes, as e.g. in SCADA features in
wind turbines. The application of causal inference to wind energy has been limited. The closest
is work by Felgueira et al. [11], who applied Normal Behaviour Models to study how causal
inference improves the accuracy of fault-classification from SCADA, but they do not model the
temporal causal graphs for this purpose. Also, Felgueira et al’s approach is mostly hypothetical
as they did not have access to labelled fault data.

Our primary contribution in this article is the use of temporal causal graphs that can
accurately model the relationships between SCADA features and turbine faults as well as the
time-delay between cause and effect. We harness the representational power of convolutional
neural networks (CNN) with attention in discovering causal relationships [12] from observed
time-series and historical error logs, and provide a comparison with recent state-of-art methods
[8]. The proposed technique can identify hidden relationship in the data and thereby generate
new insights on causal connections in wind turbine O&M. We show that not all these relations
are obvious and some (that may potentially be discarded as insignificant noise) can contribute
significantly to the model’s learning process. Our study shows that causal inference can
contribute towards enhancing the reliability of turbines, and support decision making in O&M
by making neural machine learning models more transparent and interpretable.

2. Methodology
2.1. Learning Task
Consider a multivariate time series of various parameters (hence called features) in the SCADA
data represented by X = {X1,X2, . . . ,XN} ∈ RN×L, where N denotes the total number of
SCADA features and L denotes the length (total number of observations) in each time-series.
Every ith feature, where i ∈ N is represented as X1 . . .XL. Our learning task here is to identify
the causal association between these N features (wherein each feature can have multiple cause-
effect relationships), the time delay between the cause and effect and finally construct a temporal
causal graph based on these relationships. As we are interested in identifying directionality
between the SCADA features during different faults, our task requires the construction of a
directed causal graph [13, 12] GSCADA = (V,E) with a collection of vertices and edges, with
each vertex vi ∈ V denoting a SCADA feature, and each edge connection ea,b ∈ E describing
causal transitions from vertex va to vb. Further, in accordance with the notation in [12] for
multivariate time-series observations, our goal is to identify the temporal delay d (ei,j) in the
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occurrence of cause and effect i.e. the number of time-steps (or observations), after which one
SCADA feature causally affects another. Figure 1 illustrates the structure of a directed graph
modelling the causal relationships in our scenario.

2.2. Learning Model
We propose attention-based convolutional neural networks (CNNs) as first proposed by Nauta
et al.[12] for causal inference, which has been shown effective for financial and neuroscientific
prediction making. We specifically explore the method’s applicability to time-series SCADA
features with continuous values and historical fault logs. We modify the original architecture
to develop temporal causal graphs for identifying hidden confounders in an operational turbine.
The description of different components of our learning model is provided below:-

(i) Time-series prediction of SCADA features: The first step of our causality learning
model involves time-series prediction of SCADA features. As outlined before, given a
sequence of N different SCADA features, ranging from X1 . . .XN , with each feature
consisting of L observations (total length of the time-series), the goal is to predict the

future values X̂i for each SCADA time-series, based on its present and past values. To
accomplish this, we use a CNN architecture. CNNs are a special family of feed-forward
neural networks which have achieved notable advances in computer vision [14], and have
recently successfully handled sequential data such as time-series [15]. CNNs consist of
various convolutional layers with a sliding kernel, giving them the ability to identify novel
patterns in time-series data and forecast future values of a target time series. A kernel is
a filter (or a matrix of weights in mathematical terms), computed as a convolution (dot
product) of the input time series and the present filter weights W . Considering that future j
values are to be predicted for each SCADA feature Xi i.e. L − j observations in the feature
are used as inputs (training data) to the CNN with a kernel size of S (usually determined
experimentally during hyper-parameter optimisation), the dot product is computed as:

W �
[
Xj−S+1

i , Xj−S+2
i . . . , Xj−1

i , Xj
i

]
. (1)

This process is specific to predicting a univariate time-series, such as a specific SCADA
feature. However, as we aim to model a multi-variate time series, we utilise N independent
CNNs denoted by CNN 1 . . . CNNN . Each CNN Nj predicts the corresponding time-series

X̂j (i.e. CNN 1 predicts the first SCADA feature, CNN 2 predicts the second SCADA
feature etc.). Alongside the predicted time-series, the kernel weights Wj for each SCADA
feature are also output by the CNN. Please refer to Figure 2 for an illustration.
In conventional CNNs, the number of time steps used by the sliding kernel (referred to as
receptive field) is the same as the user specified kernel dimensions. However, for temporal
causal inference, the receptive field needs to be larger than the delay between cause and
effect identified by the model. To this end, a dilation mechanism is used that helps increase
the dimensions of the receptive field, and identifies causal relationships even in situations
with large delay between multiple causes. With the dilation rate denoted as K, K = 1
denotes a conventional CNN, while K = 2 skips 1 time step (observations), K = 3 skips 2
time steps etc., and K = n skips n− 1 time steps. This is helpful whenever the time delay
affecting causality between the SCADA features is large, and also reduces computational
expense in updating the kernel weights over time [16]. For a given set of features from the
exogenous SCADA time series, the goal is to predict the target time series, ensuring that the
loss L between true values (Xj) and predicted values (X̂j) is minimised. Although CNNs
can model time-series with high accuracy [15], like other deep learning models, they are
inherently black-box in nature and do not provide transparent and interpretable rationales
for their predictions. We therefore use an attention mechanism, as outlined below:
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Figure 2. Illustration of a CNN with attention for temporal causal inference in SCADA data

(ii) Attention mechanism for discovering potential causes: An attention mechanism is
used on top of the existing CNN architecture in order to identify the specific features in
the SCADA dataset which are causally related to the target predictions. The attention
mechanism helps identify the particular inputs which the model focuses on while making
its predictions. We base our work on [17], and integrate it with the causality identification
framework by [12] for our study. Consider the N SCADA features which are predicted
in step (1) above by the N individual CNNs, amongst which the causal relationships are
to be identified. The attention vector is basically a row vector with the same number of
elements as our SCADA features (dimensions 1×N), and at each time-step of the SCADA
time-series with L observations (i.e. from time-step 1 to time-step L), the attention score

is computed by multiplication of the input feature X̂j with the updated kernel weights in
Equation 1. From this, we obtain an individual attention vector for each of our predicted
features as in Equation 2, where, j denotes the individual time steps per feature.

aj = [a1,j , a2,j , . . . , aN,j ] (2)

Finally, all these row vectors are concatenated together to generate an attention score
square matrix as per Equation 3. As a simple representation, given that we have N
SCADA features, assume an N×N attention square matrix (similar to an adjacency matrix),
wherein, every element ai,j denotes the attention score of feature Xi to be a probable cause
of Xj . Here, the diagonal elements of the matrix (wherein i = j) denote self-causation [12].

Ai,j =


a1,1 a1,2 . . . a1,N
a2,1 a2,2 . . . a2,N
. . .
aN,1 aN,2 . . . aN,N

 (3)

Given these attention scores, when our model predicts a time-series of SCADA features,
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the relative importance of all other features is obtained, with higher scores signifying that
a feature contributes more to the cause. The user can manually specify the top k values
to use for causal inference from the attention matrix. The scores, together with the kernel
weights in step (1) are then used to construct the temporal causal graph in step (3) below.

(iii) Construction of temporal causal graph: A combination of CNNs with dilation in step
(1), and the attention mechanism in (2) leads to the Attention-based Dilated Depthwise
Separable Temporal Convolutional Network (AD-DSTCN) [12]. Till this stage, we had N
independent CNNs which predict the N different time-series SCADA features, and output
the attention scores and kernel weights. These parameters are now used construct the
temporal causal graph and discover delays, see Figure 2. As constructing the causal graph
from all parameters will lead to too many relationships (many of which being non-sensible),
we compute a significance measure s(c, e) for a specific cause-effect pair by isolating the
impact of cause c on effect e [18]. The significance measure (in a range [0, 1]) determines
when the increase in model loss between the causing feature, where sudden events/changes
in time occur, and the outcome (the feature which is affected causally) is sufficient for
labelling potential causes as true (after validation) [12]. The higher the significance measure,
the lesser the constraints on the model to identify hidden confounders during inference.
Finally, once the temporal causal relationships are identified, the relevant sub-graph for a
given anomaly can be extracted from the complete causal graph depending on the type of
fault in the turbine sub-component (referred to as Functional Group in our study). Given
a type of fault which occurs in the turbine, if a feature is important, any alteration in its
values will cause a change in the confounding features, and will thus be included in the
graph. Conversely, if the feature is not important, any alterations in its time-series values
would not affect other confounding features, and would not be included in the graph.

3. Data Description and Preprocessing
We use SCADA data from an operational offshore turbine rated at 7 MW (Levenmouth
Demonstration Turbine (LDT))2. For preprocessing, data from the substation, met mast and
turbine were merged at identical timestamps to facilitate identification of the turbine operational
status. Corrupted, missing values and outliers were also dealt with at this stage, see [6] for
details. Features include electrical, pressure, and temperature readings etc. obtained from
sensors, and meteorological information like wind speed and direction, outside temperature etc.
We had historical logs of processed events for the turbine, where a fault can occur in any of 14
different functional groups (such as pitch system, gearbox, yaw brake etc.). For the purpose of
our study, an anomaly is considered to have occurred whenever a fault is raised in the processed
events data for alarms in between a specific time duration (TimeOn, when the alarm was started
and TimeOff, when the alarm was cleared). All other circumstances were considered normal
operation. To ensure that only anomalies are considered which have occurred as a consequence
of an actual fault (and not due to requested shutdowns), the forced outages in the turbine are
considered based on the unique alarms list to be an indicator of an anomaly. We obtained
SCADA data with 21,392 measurements at generally 10-minute intervals, each containing 102
features. Any fault which occurs in a turbine sub-component belongs to one of the 14 functional
groups mentioned above. Please see Github3 and Chatterjee and Dethlefs [6] for more details on
data preprocessing, power curve and fault labelling in SCADA data used in this study. Table 1
outlines an example of the structure of our data.

2 Special Acknowledgment: Platform for Operational Data (POD) Disseminated by ORE Catapult:
https://pod.ore.catapult.org.uk
3 Details of preprocessing: https://github.com/joyjitchatterjee/TurbineSCADACausality/
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Time Stamp Feature 1 (X1) Feature 2 (X2)...... Feature N (XN) Functional group
dd/mm/yyyy hh:mm:ss 2.104 0.890 8.124 Pitch System Interface Alarms
dd/mm/yyyy hh:mm:ss 1.245 3.753 9.509 Hydraulic System
dd/mm/yyyy hh:mm:ss 0.156 1.234 7.120 No fault

Table 1. Example of SCADA data structure from the LDT used for our study.

4. Experiments
We use the data for time-series prediction of different features corresponding to different
functional groups (i.e. predicting values of the features under normal operation/anomaly). We
then apply causal inference to gain a better understanding of underlying causes, as described in
Section 2. We implement our learning model in PyTorch [19]. For training, we used a learning
rate of 0.01, Adam optimisation, kernel size of 2x2, dilation coefficient of 2 and a 80-20%
train-test split for all experiments. These parameters were obtained through hyper-parameter
optimisation and empirical tuning. As described, we use the trained CNN features to extract
attention matrices for unsupervised causal discovery of SCADA features on faults in turbine-sub
components. We use the top 20 attention weights in constructing the causal graph. As our goal
is to identify hidden confounders from the data (rather than obvious relationships), we base
our significance measure on existing literature e.g. [10, 12]. Previous work has found that a
significance measure of s = 0.8 gives good results that will reasonably bridge the gap between
relevance and number of hidden confounders identified.

We evaluate our model based on the average Mean Absolute Scaled Error (MASE) and
average standard deviation, and compare it against a state-of-the-art baseline, the deconfounder
in [10]. The deconfounder is a statistical algorithm for causal inference based on a probability
factor model which uses a controlled study to identify causal effects in different groups in the
population. Finally, based on our attention scores and kernel weights, the complete temporal
causal graph is constructed. We extract the relevant sub-graphs from the complete graph based
on functional groups for interpretation of the confounders, see discussion in Section 5.

5. Results
Table 2 shows our results. Our AD-DSTCN model with 1 layer in Depthwise Convolution
performed the best with a MASE of 1.066 and standard deviation of 2.948. In comparison, our
deconfounder baseline [10] achieved a MASE of 3.901 – 72.67% worse than our proposed model.

Layers in Depthwise Convolution Optimiser Epochs MASE Std. Deviation

1 Adam
500 3.292 4.731
1000 1.066 2.948
2000 1.212 2.985

RMSprop 1000 2.493 3.829
2 Adam 1000 2.609 2.356

Table 2. Evaluation of model performance for temporal causal inference.

We extracted the subsets of temporal causal graphs from the complete causal graph for
various cases of faults in functional groups. This was used to discover hidden relationships
in the SCADA corpus during faults in different sub-components of the turbine. Further, our
model identifies the time delay in causation as a function of time-steps in the SCADA time-
series (wherein 1 time-step is equivalent to 10 minutes of SCADA measurements). Note that
temporal causal graphs, unlike any other form of data representation in coordinate systems
(e.g. time-series/images/audio signals) do not exist in Euclidean space. Also, they do not
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Functional Group Hidden Conf. discovered Avg. % Relevance

No Fault D 86.95%

Partial Performance-Degraded D 45.45%

Pitch System Interface Alarms D 63.15%

Gearbox D 33%

Pitch System EFC Monitoring D 60%

PCS D 54.54%

MVTR × N/A

Yaw Brake D 60%

Hydraulic System D 58%

Yaw D 44.44%

Wind Condition Alarms × N/A

Pitch D 66.66%

IPR × N/A

Test D 28.57%

Table 3. Qualitative evaluation of confounders. Cases ≥ 60% relevance shown in bold face.

have a fixed structure, which makes both, the construction and quantitative analysis of the
graph a difficult task. However, the relationships between visualised SCADA features can
be qualitatively analysed by turbine engineers and technicians to facilitate explainability of
decision-making in the learning models. Our deep learning approach for causality identification
can provide completely new knowledge based on the identified relationships, and shed light on
integral relationships that may otherwise be discarded as noise.

As it was not possible to verify the identified causal relationships quantitatively (due to
the lack of ground truth on hidden confounders), we performed a qualitative evaluation of the
temporal causal graphs generated for 14 different categories of faults (Functional Groups) for
our study. Note that some relationships are obvious (e.g. time-series of active power mean value
affecting active power minimum value, but may not make sense in the context of a given fault
at all). For our qualitative evaluation, we only consider those relationships to be relevant where
the identified confounders are in-line with the context of the anomaly. Additionally, in some
cases, our causal learning model was not able to identify any hidden confounders in line with
the fault context. Percentage relevance is evaluated on a random, but representative portion of
our test set for our study and represents the human evaluation on how likely a relation is to
occur based on domain understanding, though we understand that this might differ from how
the machine interprets during the prediction process. The percentage relevance is therefore only
a reflection of human understanding. Table 3 summarises the percentage relevance of identified
causal relationships (if any) in different Functional Groups. Note that the temporal graphs used
are based on 80% significance measure, as these were found to be the most reasonable in terms
of sufficient number of hidden confounders identified as well as relevance to the fault context.

As can be seen from Table 3, our model identified the most relevant causal relationships
during normal turbine operation (no fault), followed by pitch system, pitch interface alarms,
pitch system EFC monitoring and yaw brake, all with higher than 60% relevance. The model was
not able to identify hidden confounders for faults in the Wind Condition Alarms and Moisture
Vapour Transmission Rate (MVTR), possibly due to a lack of multiple latent variables (other
than the obvious wind speed in the former, and vapour transmission parameters in the latter).
The model performed poorly for some cases like Test Rig and Gearbox (with relevance as low
as 28.57%) during causality inference, likely due to the complex nature of the faults (and errors
in data produced by Test Rigs). Below, we discuss some interesting cases of hidden confounders
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observed by our model during causal inference. The interested reader is referred to Github4 for
temporal causal graphs for multiple other cases under different categories of anomalies.5 6

Case 1: Hidden confounders identified during normal operation of turbine with
significance measure 0.80 Figure 3 shows the causal relationships for turbine normal
operation. Most of the identified relationships are as expected, such as rotor speed being
causally related to pitch angle, nacelle angle to rotor speed and wind direction, active power to
grid voltage etc. all with a delay of 0 time steps (instantaneous causation). These relations are
reasonable as during power limitation and optimisation control of the turbine, such parameters
essentially ensure optimal performance [20], and turbines use blade pitch to vary rotational
speed during power generation. Many relationships from the same time series share causality
(e.g. reactive power mean to standard deviation relation, wind direction min. to standard
deviation etc.), mainly due to similar patterns (as 10 min. ave. features from the same context
would share causal confounders).

Pitch Angle 
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Mean Value 
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celsius)

Figure 3. Hidden confounders for normal operation of turbine, wherein increase in loss between
original time-series and intervened AD-DSTCN output is 80% significant.

Case 2: Hidden confounders identified during anomaly in yaw system with
significance measure 0.80 Figure 4 shows hidden confounders for an anomaly in the yaw

4 Various temporal causal graphs for our study: https://github.com/joyjitchatterjee/TurbineSCADACausality/
5 We focus our discussion on the relevant hidden confounders which can be interpreted by a human, instead
of all confounders which are used by the AI model, the qualitative evaluation of which is difficult to establish.
The irrelevant parameters can be investigated further by engineers & technicians to see why the model uses the
causally-related features in some contexts.
6 Note: In our case-discussions for the temporal causal graphs, the relationships shown should be interpreted
as follows: change in Y (outcome) is caused by any intervention (change) in X, where the identified causal
relationship is Y− > X. We opted for this notation for the sake of simplicity and suitability to our SCADA
features. Also, the identified delay d(y, x) denotes that the outcome feature experiences the change d time steps
after the intervening feature experienced it. E.g. a relation from rotor speed (Y ) to pitch angle (X) Y− > X at a
delay of 1 time-steps would signify that the rotor speed is causally affected/experiences a change due to variation
in pitch angle, and this effect occurs 1 time-step (10 minutes for our SCADA data) after variation of pitch angle.
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Figure 4. Hidden confounders for yaw system
anomaly, wherein increase in loss between
original time-series and intervened AD-DSTCN
output is 80% significant.
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Figure 5. Hidden confounders for
pitch system anomaly, where increase
in loss between original time-series and
AD-DSTCN output is 80% significant.

system. The absolute wind direction is causally related to the nacelle angle during this anomaly.
This is reasonable as wind is a highly variable parameter, and depending on the present wind
direction measured by the nacelle measuring instrument, the turbine’s control system directs
appropriate yawing. With any change in wind direction, frequent start/stop of the yaw system
to keep the turbine aligned with the wind leads to rotor torque fluctuations and resistance
torque variations, causing load fluctuations in the yaw system [21]. These can directly lead to
speed fluctuations in the system, making it unstable, and cause vibrations in the nacelle. As
the nacelle position signifies the angle between the turbine rotor axis and true north [22], this
instantaneous causal relation (0 time steps delay) signifies possible high aerodynamic yaw loads,
and slippage of the nacelle. The yaw anomaly further affects the turbine’s power generation
efficiency [23] causing production losses shortly after the anomaly occurs (1-2 time steps delay).

Case 3: Hidden confounders identified during anomaly in pitch system with
significance measure 0.80 Figure 5 shows the temporal causal graph for an anomaly in
the pitch system. The turbine pitch angle value is causally related to the reactive power. This
is reasonable given that any deviation in pitch angle from a predefined optimum value (under
given wind speed) affects the power dynamics (such as active power and reactive power) of
the turbine [24]. Additionally, we observe that these causal relationships arose during an actual
alarm (Pitch System Interface Alarm), which can signify that the pitch angle’s dynamic response
faced a significant anomaly, resulting in potential failure of the control system.

Case 4: Hidden confounders identified during anomaly in yaw with significance
measure of 0.95 Shown in Figure 6, while our model identifies the highest number
of hidden confounders (with an increased signficance measure), this comes at the cost of
explainability/credibility of certain features. Reasonable temporal features identified are:
reactive and apparent power are causally related to power factor7, active power is causally related
to rotor speed etc.8, and active power changes with generator converter speed. The graph shares
other relations from Case 2. However, many relationships are either non-credible or difficult to
explain, such as: generator stator temperature being causally related to nacelle angle and wind
direction, outdoor temperature to active power, or pitch angle to reactive power. These seem

7 Power factor is by definition the ratio of cosine angle from apparent to reactive power.
8 Any change in active power is caused by variation of rotor speed, which is reasonable as the yaw error affects
running characteristics such as rotor speed and active power [21].
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Temporal causal graph for anomaly in the Yaw System
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Figure 6. Hidden confounders for yaw system anomaly, wherein increase in loss between original
time-series and intervened AD-DSTCN output is 95% significant.

to signify that a change in nacelle angle causes a change in generator stator temperature, which
seems meaningless if seen stand-alone. However, we can see from the graph that nacelle angle
is also causally related to the pitch angle (whereby generator stator temperature also indirectly
shares cause-effect relationships to pitch angle), which can describe a situation where the yaw
error affects the pitch control system, and causes the generator stator temperature to share this
relationship.9 We can see these relationships as situations where a co-located anomaly appeared
in another turbine sub-component at the same time (either as an effect of the present anomaly,
or independently), which led to variation in the statistical properties of the other features (either
directly or as a consequence of causation between multiple confounders). We do not claim that
all identified relationships are credible to a human expert and some can be hard to explain [26],
but we believe that they can help probe a learning models’ predictions and enhance transparency.

6. Discussion and Conclusion
We have proposed a novel application of deep learning for temporal causal inference using wind
turbine SCADA data. In particular, we have demonstrated that using the operational status of
a turbine as the target for causal inference, we can discover numerous hidden predictor variables
that are not picked up by existing models in the literature, as far as we are aware. Earlier
related work by Felgueira et al. [11] has applied Autoregressive Causal Normal Behaviour
Models to temporal causal inference, however their model neglects crucial temporal cause-effect
relationships which can be identified via temporal causal graphs. We have also found that

9 According to [25], the pitch angle and generator stator temperature signals do indeed have correlation during
dynamic monitoring of faults in pitch system and are related to a certain degree.
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although a lower significance measure identifies fewer hidden confounders, more of these are
relevant to the domain. Our temporal causal inference model is not perfect and we do not claim
that all identified relationships are directly relevant for the wind turbine operators. Nonetheless,
we show up a clear path towards explainable AI for the wind industry, as the internal parameters
used by current black-box deep learning models are transparently revealed with our approach.
By utilising larger datasets, and tuning the models with human-specified optimisations, we
envisage that the explainablity of the AD-DSTCN model be can further improved in the future.
By helping in explainable AI for wind turbines, and inspiring more wind farm operators to employ
data-driven decision making for significant reductions in O&M costs, we hope to contribute to a
fast-paced move to renewable energy sources. In future work, we plan to extend our model with
a complete knowledge graph database for wind turbines, which can help in generating effective
policies and maintenance strategies for O&M through natural language generation for further
accessibility of turbine logs.
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