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Abstract. The Mega-Science project NICA (Nuclotron-based Ion Collider fAcility) is under
construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The Multi-Purpose
Detector (MPD) is part of this complex, as a main physics experiment operating there. It aims
to study the phase diagram of QCD matter at maximum baryonic density, determine the nature
of the phase transition between the deconfined and hadronic matter and perform a search for
the conjectured critical point in the diagram. Status of the preparation of critical elements of
the infrastructure will be discussed, including the construction of the MPD subsystems.

The designed physics performance of the detector components will be discussed. Spectra
of identified hadrons, including hyperons and hypernuclei will be discussed, with emphasis on
differential measurement and total yield extraction. The quality of directed and elliptic flow
determination will be discussed, with comparison to model expectations. The sensitivity of
event-by-event fluctuations and femtoscopic measurements to the nature of the phase transition
and the presence of a critical point will be given. Performance of the electromagnetic calorimeter
working in conjunction with the tracking system for the di-lepton measurements and the
potential for identification of charmed mesons will be described. In summary, all the main
components of the physics program of the MPD Collaboration will be presented.

1. Introduction
The investigation of the phase diagram of the strongly interacting matter has been the focus of
many years of research at several experimental facilities, including the Super Proton Synchrotron
(SPS) at CERN [1, 2, 3, 4], as well as the Beam Energy Scan program at the Relativistic Heavy-
Ion Collider at Brookhaven National Laboratory (BNL) [5, 6, 7]. The existence of a deconfined
phase, where quarks and gluons are no longer bound into hadrons, the so-called Quark Gluon
Plasma has been confirmed in collisions at the energy frontier at RHIC and Large Hadron
Collider (LHC) energies. In such collisions maximum energy densities are reached, while the net
baryon density is close to zero. The transition to the ordinary hadronic matter is of the cross-over
type there. The theoretical calculations on the lattice predict that at large net baryon densities
the transition is of the first order. That implies the existence of the conjectured critical point in
the phase diagram. Matter created in collisions at lower energies is reaching lower temperatures
and baryon densities above 300 MeV, where the search for these features may be performed,
and the determination of the Equation Of State (EOS) of nuclear matter may be achieved.

Recent discovery of a neutron star merger via the observation of the gravitational wave [8],
as well as accompanying signal in the traditional electromagnetic observations [9] was the first
example of the so-called multi-messenger astronomy. It is expected that such observations may
become more frequent, giving unique experimental insight into the behavior of nuclear matter
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Figure 1. (left) The general overview of the NICA Accelerator Complex. (right) The schematic
view of the MPD detector in Stage 1.

at extreme conditions. Simulations of neutron star collisions are driven by the EOS, which is
investigated in heavy-ion collisions. In fact it is expected that in certain regions of the neutron
star collision zone matter may reach temperatures and baryonic densities of the same order
as in the collisions mentioned above. This presents an unique opportunity to study the same
phenomena in fundamentally different experimental regimes, which provides crucial cross-checks
for any theoretical understanding of the EOS.

The new experimental and accelerator complex: the Nuclotron-based Ion Collider fAcility
(NICA) is being constructed at the Joint Institute for Nuclear Research (JINR) in Dubna. The
design parameters of NICA in the collider mode are Au+Au collisions in the

√
sNN range of 4-11

GeV per nucleon pair. The facility will also provide collisions of polarized protons and deuterons
at the second stage of operation. The main detector dedicated to QCD physics at NICA is the
Multi-Purpose Detector (MPD), which is being constructed at one of the two beam crossings at
NICA. This work will shortly describe the status of MPD construction as well as main physics
goals of the experiment.

2. NICA Accelerator Complex
The NICA Accelerator Complex, shown schematically in Fig. 1, is located in the Veksler-Baldin
Laboratory for High Energy Physics (VBLHEP) of JINR. The Nuclotron accelerates (polarized)
protons, (polarized) deuterons as well as heavy ions up to Bi, delivering maximum kinetic energy
of 10.71 GeV/u for protons and 3.8 GeV/u for Au ions. It is in operation since 1993 and has
recently undergone significant upgrade. The specific ion sources together with LU-20 Linac
provide light ions (up to C) to Nuclotron. The beams can be then extracted to the Fixed Target
Area, where the Baryonic Matter at Nuclotron (BM@N) experiment is currently operating. All
systems mentioned above are fully commissioned and operational. The heavy ion beams originate
in the KRION source and are first accelerated in the HILac linear accelerator. Both are fully
commissioned and operational. Beams will then transfer to the Booster auxiliary accelerator.
Its main purpose is the storage of ions with A/Z not larger than 3 and initial acceleration
to 600 MeV/u, which allows full stripping of ions during the transfer to Nuclotron. Booster
is currently in construction, commissioning of critical systems is expected in 2020 and 2021.
Together, Booster and Nuclotron will provide heavy-ion beams. The final part of the complex is
the NICA storage and acceleration with the racetrack shaped ring of 503,04 m circumference. It
will provide collisions of Au (and other) ions in the range of 4 to 11 GeV center-of-mass energy
with 1 × 1027 cm−2s−1 luminosity. Two collision points are located at two straight sections of
NICA - the MPD experiment will be located around one of them. Civil construction of buildings
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for NICA and its transfer lines is significantly advanced, while installation and commissioning
of the accelerator components is planned for 2021 and 2022. First beam in NICA is expected in
2022.

3. The MPD apparatus
The civil construction for MPD Hall, where MPD apparatus will be located is finished. The
general schematic view of the apparatus is shown in the right panel of Fig. 1. The central-barrel
detectors will be housed inside the large-aperture magnet. The outer iron yoke, serving also as
structural support for the setup is already delivered to JINR and its assembly will take place
in summer of 2020. The superconducting solenoid is manufactured and will be transported to
JINR in late 2020 and assembled with the yoke. Together, they will provide a uniform magnetic
field of up to 0.5 T along the beam axis. A dedicated carbon fiber support structure will be
attached to the magnet structure, and will allow installation of the remaining MPD subsystems.

The main tracking detector of MPD will be the Time Projection Chamber, a gaseous detector,
with cylindrical shape enclosing the beam pipe, 340 cm in length, with 140 cm and 25 cm
outer and inner radii respectively. It will provide 3D tracking of charged particles, as well as
measurement of specific ionization energy loss for particle identification for |η| < 1.2. Expected
relative transverse momentum resolution of less than 2.5% below 1 GeV/c and primary vertex
z-coordinate better than 200 µm for events with track multiplicities above 200 will be achieved.
The main components of the TPC vessel have been manufactured. Mass production of the TPC
read-out chambers is ongoing.

The TPC will be surrounded by cylindrical barrel of the Time-of-Flight (TOF) detector,
based on the Multigap Resistive Plate Chambers (MRPC) detectors, with strip read-out. Total
of 28 modules with 13440 channels are in production and commissioning. The TOF will provide
the measurement of the particle’s arrival time with the time resolution of the order of 50 ps, as
well as the position of the track. By performing the TPC-TOF matching, particle identification
will be possible allowing to distinguish pions from kaons up to 1.5 GeV/c and protons from
pions and kaons up to 2.5 GeV/c.

The Electro-Magnetic Calorimeter (ECal) will consist of shashlyk-type towers of
approximately 11 interaction lengths with lead absorber and plastic scintillators. It will be
a cylinder surrounding the TOF, consisting of almost 40 000 towers arranged in projective
geometry. Its main purpose it to measure the position and total energy of electrons and photons
in heavy-ion collisions. The production of ECal modules has already started, with the installation
of the limited number of finished ECal sectors expected for first data-taking.

In the forward direction two detectors will be installed. The forward Hadronic Calorimeter
(FHCal) will provide centrality determination as well as reaction plane measurement. It is
composed of 88 modules placed in two parts on the opposite side of the interaction point. Each
module consist of 42 lead-scintillator sandwiches read out by WLS fibers. All FHCal modules
are produced and ready for installation.

The Fast-Forward Detector (FFD) will provide fast triggering for nucleus-nucleus collisions,
as well as a start time T0 for the TOF. The two Cherenkov modular arrays are placed at
2.7 < |η| < 4.1, close to the beam pipe. All components of the FFD have been manufactured.

In summary, in the first stage MPD will be able to provide full tracking of charged particles in
the central barrel, together with full particle identification, including the separation of electrons
from hadrons as well as total energy measurement for photons. Centrality determination, as
well as reaction plane measurement will be possible, as well as precise determination of primary
and secondary vertices. With these capabilities the physics program of the MPD is expected to
be rich and should enable direct comparison with results obtained at similar collision energies
at RHIC and SPS.
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Figure 2. (left) The schematic view of the QCD Phase diagram. (right) The collision energies
and expected interaction rates of currently ongoing and planned experimental programs.

4. The physics program of the MPD experiment
The main goal of the physics program of the MPD experiment is the characterization of the QCD
phase diagram, shown schematically in Figure 2, in the less explored area of large temperatures
and large baryochemical potential. The region of maximum temperatures and vanishing baryon
density has been explored by the experiments at the LHC, as well as measurements at top
RHIC energy. The production of QGP was confirmed at these conditions, and the transition
back to hadronic matter has been discovered to be of the cross-over type. At larger baryon
densities models consistently predict the existence of first-order phase transition between QGP
and hadronic matter. That implies the existence of the critical end-point in the diagram. The
search for this point is being carried out at RHIC Beam-Energy Scan (BES) program as well as
in SPS. So far no conclusive evidence for the existence of the critical point has been found.

As can be seen from Fig. 2 NICA will provide competitive experimental conditions for the
exploration of the phase diagram area of interest. The

√
sNN range of 4-11 GeV for heavy-

ion collisions allows to explore the area of maximum baryon density. The expected luminosity
is at least an order of magnitude larger than in other facilities at similar

√
sNN. Moreover,

the MPD has collider geometry, with large and uniform acceptance which changes little with
collision energy, allowing for measurements of several key observables with reduced systematic
uncertainty. In general the discovery potential at NICA is unique and complementary to similar
measurements at lower energies at FAIR as well as at higher energies at SPS and RHIC BES.

Initial measurements at MPD will need precise determination of several key characteristics
in data. The track multiplicity in the TPC as well as energy deposit in FHCal will enable
determination of the event centrality. To associate the experimentally determined quantities to
the geometrical parameters, such as impact parameter and number of participants/spectators,
a Modified Wounded Nucleon model will be used, also known as MC-Glauber [10]. Multiplicity
density per unit of pseudorapidity is related to the achieved energy density in the collision [11].
Its measurement will allow to test, whether densities needed for the creation of QGP are reached
in the collisions at NICA. When combined with PID it will also determine the transverse energy
density, which is related to the internal pressure in the extremely dense matter produced in
collisions of heavy-ions [12].

The ratio of production of identified hadrons with respect to their anti-particles is directly
related to the charge transport mechanism in the collision. The ratio will be measured separately
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for π+/π−, K+/K−, and p/p̄, as a function of collision energy and centrality. When extrapolated
to full 4π acceptance, the data will provide total yields of various particle types, including
the ones reconstructed via their decay topology. Transverse momentum spectra for all those
particle types will be measured in wide acceptance in η and pT. A wealth of information can
be deduced from such data, including the freeze-out temperature and baryochemical potential
of the produced system. This will allow precise positioning of each collision category (e.g. vs.
centrality and collision energy) on the phase diagram of QCD. The reconstruction of particles
with non-zero strangeness, including multi-strange baryons such as Ξ and Ω, will allow to address
critical questions, such as onset of deconfinement, the possible existence of the critical point as
well as the degree of thermalization in the system.

The study will be extended to reconstruction of strongly decaying resonances, such as ρ(770),
K∗(892), ϕ(1020), Σ(1385), and Λ(1520). They will be included in the fits with the statistical
model mentioned above, but they can also provide unique information on the rescattering phase.
Resonances’ lifetime is comparable with the duration of the phase, during which they can undergo
rescattering and regeneration. By comparing the observed yield of resonances with respect to
the statistical model expectation, the duration of the phase can be inferred [13, 14].

QCD matter created in heavy-ion collisions is strongly interacting, and is subject to intense
density gradients, leading to large pressure and development of collective behavior of matter.
It manifests itself as various types of flow. In the transverse plane the matter generally flows
outwards from the collision axis, resulting in radial flow. It modifies strongly the inclusive
transverse momentum spectra of particles with different mass, from which its measurement can
be inferred. Just after the collision the spectator nucleons still remain close to the created
system, preventing the flow of matter in their direction. This results in the so-called directed
flow v1. Its measurement in RHIC BES energies [15] reveals intriguing non-monotonic behavior,
which will be investigated in MPD thanks to its excellent acceptance and PID capabilities. In
the transverse plane the cross-section of colliding nuclei has an almond shape, leading to the
development of elliptic flow v2. Its measurement reveals how efficient is the transfer of spatial
anisotropy to the momentum one, allowing for the determination of crucial properties of the
system, such as shear viscosity to entropy ratio η/s, as well as possible changes to the speed of
sound cs near the phase transition, resulting in the softening of the EOS.

The size and dynamic evolution of the system created in heavy-ion collisions can be studied via
the femtoscopy technique, relying on the measurement of two-particle correlation as a function of
pair relative momentum. Analysis for pairs of identical charged pions will be performed at MPD
vs. centrality and pair transverse momentum. The size of the system will be measured. The
dependence of this size on the momentum is interpreted as a consequence of dynamical radial
expansion. It has also been argued [16], that a specific ratio of system sizes in the transverse
plane is directly sensitive to the existence of the first order phase transition.

The event-by-event fluctuations of total event multiplicity, mean transverse momentum and
conserved charges, as well as multipicities of identified hadrons should show a non-monotonic
behavior in the vicinity of a critical point. MPD, as a collider experiment, offers large acceptance
(at least |η| < 1.2 and 0.2 < pT < 3.0 for identified particles), approximately constant with
respect to collision energy. Such conditions allow to significantly reduce systematic uncertainties
in fluctuation measurements making MPD ideally suited to perform this search.

The EMCal will provide data on photon production at NICA. Of special interest is the
measurement of low to intermediate pT direct photons, which carry information about the initial
temperature of the system [17, 18, 19], which can be compared to the critical temperature of
the phase transition to the deconfined phase of approximately 160 MeV. Photon measurement
will also allow for identification of π0 and η mesons as a function of centrality and pT, which
will serve as a cross-check for charged meson data. EMCal, when combined with tracking and
charged particle rejection from TPC and TOF will also provide a clean sample of electrons.
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This will allow a study of light vector meson, as well as extensive investigation of the di-lepton
production at a wide range of invariant mass, as well as the total transverse momentum of the
pair. NICA offers a favorable conditions for such studies, as the expected background from
charm production is expected to be significantly reduced, when compared to collisions at higher
energies.

5. Summary
The status of the preparation of the NICA Accelerator Complex has been briefly presented.
The Nuclotron, as well as two main injector chains are commissioned and operational. Booster
auxiliary accelerator is in final stages of assembly. The civil construction for NICA is progressing
according to schedule. First beams in NICA are expected in 2022. The civil construction for
MPD Hall has been finished and the assembly of detector magnet has started. Production
of subdetector components for TPC, TOF, ECal, FHCal and FFD are in progress with
commissioning of the MPD setup expected to start in 2021.

The physics program of MPD has been briefly discussed with the emphasis on data from initial
NICA operation, where collisions of heavy ions are expected. Measurements of collision centrality
and event plane, together with full tracking are foreseen. Full characterization of the particle
production in the soft regime is planned, with an important component of electromagnetic
probes. Data will allow for the search for the signatures of the decnfined matter, the existence
and nature of the phase transition to ordinary hadronic matter, as well as possible existence
of a ctitical point in the phase diagram of the QCD matter. We are looking forward to first
data-taking at NICA with MPD.
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