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Abstract. The Kriging-based genetic algorithm applied to aerodynamic optimization 
design encounters a problem of unexpected sample size. In this paper, an adaptive 
method is proposed that the search space moves with the local optimum. The automatic 
division and hierarchical approximation of search space are realized by taking the 
selection of refinement samples into account. The typical function optimization and 
transonic supercritical airfoil drag reduction design are performed using this method. 
Results show that the number of samples required is greatly reduced, and the 
aerodynamic performance of the airfoil is efficiently improved. 

1.  Introduction 
CFD (computational fluid dynamics) method has been widely used in aerodynamic simulation and 
optimization design of modern aircraft. Although the computer science and technology has developed 
rapidly, it still takes a long computing time. At present, the optimization methods [1] that can be 
combined with CFD are genetic algorithm, ant colony algorithm, particle swarm algorithm, etc. In the 
design process of applying these algorithms, it is necessary to calculate the design model iteratively. For 
complex flows, especially in the face of multi-objective and multi-design variables, the computational 
cost has increased dramatically and has become a difficult bottleneck. To solve the problem of large 
amount of numerical simulation, kriging surrogate model is introduced into the optimization design [2]. 
This statistical technique is used to construct approximate functional relations between variables and 
response functions. 

Many people have already done the aerodynamic optimization design through the Kriging method 
with different characteristics. H.T. Wang [3] using the niching micro genetic algorithm to optimize the 
expected improvement function, and proposed an adaptive sequential optimization algorithm based on 
the Kriging agent model. H. Chung [4] using gradients to construct Cokriging approximation models, 
and reduced the computational cost needed for the common Kriging model to accurately capture 
multiple local extrema within a relatively large design. S.J. Leary [5] treating the results of a cheap 
model as knowledge to be incorporated in the training process, and developed a new knowledge-based 
Kriging model in multi-fidelity optimization. Compared with the work of this paper, their methods are 
not suitable for solve the disaster problem of samples number which caused by constructing surrogate 
model in high-dimensional space, and the accuracy of the optimization result is not high enough. Finding 
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an adaptive method to reduce the number of samples required is valuable and challenging in 
optimization design. 

Most of the time, we are more concerned with the accuracy of the optimized results than the global 
precision of the surrogate model. In this paper, the qualitative relationship between the number of 
samples, the dimension of design variables and the accuracy of fitting is statistically analyzed. Then an 
adaptive searching Kriging surrogate model is proposed that the search space moves with the local 
optimum, and combine it with genetic algorithm to achieve transonic supercritical airfoil aerodynamic 
optimization design. Finally, the optimization results are compared with the original RAE2822 airfoil 
and other algorithms. 

2.  Kriging Surrogate Model 
The Kriging surrogate model [6, 7] expresses the unknown function y(x) as: 

 ( ) ( )y zµ= +x x  (1) 

Where x is an m-dimensional vector, µ is a constant global model and z(x) represents a local 
deviation from the global model. By using the specially weighted distance and the Gaussian random 
function, the correlation between the point xi and xj is expressed as 

 ( ) ( )2

1

, exp | |
m

i j i j
k k k

k

R x xθ
=

= − −∏x x  (2) 

Where θk is the kth element of the correlation vector parameter θ. The Kriging predictor is 

 ( ) ( ) ( )T 1ˆ ˆ ˆy µ µ−= + −x r x R y 1  (3) 

Where R denotes the n×n matrix whose (i, j) entry is R(xi, xj), r is vector whose ith element is R(x, 
xj). µ̂  is the estimated value of µ, expressed as 

 ( ) 1T 1 T 1µ̂
−− −= 1 R 1 1 R y  (4) 

The parameter θ can be estimated by maximizing the following likelihood function 

 ( ) ( )21 ˆln ln ln | |
2

Likelihood n σ= − + R  (5) 

Where 

 ( ) ( )T2 11ˆ ˆ ˆ
n

σ µ µ−= − −y 1 R y 1  (6) 

The surrogate model is established based on the sample point data, a reasonable sample selection 
method is of great significance to improve design efficiency. Latin Hypercube Sampling method is 
adopted in this paper due to its fast design speed and uniform distribution [8]. The number of samples 
N is usually related to the dimension of the design variables m and the accuracy of the errors ε′ required. 
Take the following test function, for example, to get the statistical relationship between N and m, ε′, as 
shown in Fig. 1. 

 2

1 1

1( ) ( ) , | | 10, 1,2,...,
m i

j
i

i j

x
f x x i m

m i= =

= ≤ =∑ ∑  (7) 

ε′ is expressed as 
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Where extra n sample points for testing model accuracy (n=1000m). we can see that the higher the 
dimension and the higher the precision, the total number of samples required will increase exponentially. 
 

 
Figure 1. The relationship between N and m, 'ε  

3.  Adaptive Searching Method 
Among the optimization methods for solving nonlinear problems, the trust region algorithm has become 
a popular choice due to its characteristics of region search and good overall convergence. The main idea 
of trust region is to use an approximate model to fit the objective function in a neighborhood centered 
on the current iteration point, and obtain the optimal point of the approximate model in the current 
neighborhood through sub-optimization, and use this optimum as the center of the next iteration, re-
determine the search neighborhood, and iterate to convergence. 

Based on the idea of trust region update, an adaptive searching Kriging surrogate model is proposed 
in this paper. This efficient optimization method is suitable for high-dimensional design space which 
combined with genetic algorithm. During the optimization process, the refinement samples are selected 
to build Kriging model at different stages, so the automatic division and hierarchical approximation of 
search space can be realized. This method aim to abandon the pursuit of high fitting accuracy of the 
global space covered by a large number of samples and turn to search for the optimal solution space. 
Samples are encrypted to improve the accuracy of the search neighborhood, and each iterative search is 
carried out in a small interval, so that the total size of the samples can be effectively controlled and the 
global optimum with higher accuracy can be found. As shown in Fig. 2, the specific process of this 
method is as follows: 

(1) Latin hypercube sampling for global variables space, constructing the initial Kriging surrogate 
model, using the GA algorithm to seek the global optimum; 

(2) Take the global optimum as the center, and draw a small local search area, sampling in this area 
and adding the optimum found in the previous step, re-constructing the Kriging surrogate model, using 
the GA algorithm to seek the local optimum; 

(3) Take the local optimum found in the previous step as the center, and draw a small local search 
area, re-seeking the local optimum in the way using in step (2); 

(4) Repeat step (3) until the local optimum is no longer moving; 
(5) Expand the search space, re-seeking the optimum in the way using in step (2). If the local optimum 

has changed, repeat step (2-5); If not, turn to the next step; 
(6) Reduce the search space and sampling in this area, then the more accurate optimum can be 

obtained finally. 
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Figure 2. Adaptive searching method 

 
For verifying accuracy and efficiency of the adaptive searching method, two kinds of Kriging 

surrogate model combined with genetic algorithm are established based on different number of samples. 
Let the dimension of the variables m = 10 in the above test function (equation 7 in section 2), then the 
global minimum is f (0, 0,…,0)=0. In the process of adaptive Kriging Surrogate model, the number of 
initial sample points is 500, and the number of samples added adaptively is 400. In order to illustrate the 
validity of this method, 1000-3000 samples are used to construct a common Kriging surrogate model 
additionally, and the comparison of the optimization results is shown in Table 1. The drift rate λ is 
defined as the percentage of the optimal value found by the surrogate model that deviates from the 
theoretical optimum, expressed as: 

 
1

( ) 0/ 1 0%
optm

i i

i i

x x m
L

λ
=

×
−

= ∑  (9) 

Where xopt is theoretical optimum, Li is the interval length of the i dimension variable. 
 

Table 1. Optimization results comparison of 10D test function. 

Model Sample size Drift rate λ Prediction Real value 
Theoretical value — 0% — 0.0 

Kriging 1000 3.749% -1.8e-2 3.6e-02 
Kriging 2000 0.888% -3.6e-3 2.1e-04 
Kriging 3000 0.713% -7.3e-3 1.2e-04 

Adaptive Kriging 900 0.004% 0.0 1.2e-05 
 
We can see that the optimum of the adaptive Kriging surrogate model predicted is almost equal to 

the theoretical value, and its result is far more accurate than the result of the common Kriging surrogate 
model. More importantly, this adaptive method saves a great amount of samples, and the higher the 
variable dimension is, the more samples are saved. This proves the great superiority of the adaptive 
Kriging surrogate model in this paper. 

4.  Application in Aerodynamic Optimization Design 
The adaptive Kriging surrogate model method is used to solve the airfoil aerodynamic optimization 
problem in this section, for the sake of study its application value. 
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4.1.  CST parameterized method 
A suitable airfoil parameterization method plays an important role in the search efficiency of the 
optimization algorithm. At present, the commonly used parameterized methods include CST, Bezier 
curve and Hicks-Henne parameterization [9]. The CST method used in this paper is easy to use, intuitive 
and controllable, it’s suitable for solving the problem of aerodynamic optimization combined with 
optimization algorithm [10, 11]. 

As presented in Fig. 3, a round nose and a sharp trailing edge is adopted. The design parameters are 
taken as the leading edge radius Rle, the trailing edge coordinate ∆zte/c, the airfoil boat-tail angle of upper 
and lower surfaces β(β′), shape function control parameters of upper and lower surfaces bi(bi′) 
( 1,2, , 1i n= − ). 
 

 
Figure 3. Airfoil geometry control parameters 

 
The coordinates for an airfoil shape can be easily obtained from a known analytic function as: 

 ( ) ( ) tezz x x xC S
c c c c c

∆
= + ⋅  (10) 

The term ( / )C x c  will be called the “class function”, and is defined in the general form as: 

 1 2( ) ( ) (1 ) ,0 1N Nx x x xC
c c c c

= − ≤ ≤  (11) 

Where N1 = 0.5 and N2 = 1.0. It will be subsequently shown that the exponents of the class function 
define basic general classes of geometric shapes. The shape function ( / )S x c  expressed as: 
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!( ) ( ) (1 )
!( )!
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i

x n x xS b
c i n - i c c

−

=

 
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Where 0 (0) 2 / , (1) tan /le n teb S R c b S z cβ= = = = + ∆ . 
In summary, the general and necessary form of the mathematical expression that represents the airfoil 

geometry is: 

1

1
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   

∑  (13) 

4.2.  Transonic Supercritical Airfoil Optimization 
Taking the RAE2822 supercritical airfoil as the initial airfoil, the optimization design of its drag 
reduction is carried out. The design state is: 
 

7Ma 0.73, 2.31 , 1.7 10Reα= = ° = ×  
Min   CD 

x/c

z/
c

R
l e △ z

t e
/ c

β
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S.t.    0 0,L LC C S S≈ ≥  

The lift coefficient of the reference airfoil is CL0=0.6966, the drag coefficient is CD0=0.01368, the 
area is S0=0.0778m2. The optimization objective is to minimize the airfoil drag coefficients, constraints 
for the lift coefficient remained essentially unchanged, and the airfoil area is not reduced. Reynolds 
averaged Navier-Stokes equations are used to calculate the flow field around airfoil. The turbulence 
model is S-A, the structured mesh is adopted (see Fig. 4), and the number of grids is 73644. The design 
parameters and the corresponding constraint ranges are shown in Table 2. 

 

 
Figure 4. Airfoil grid 

 
Table 2. The design parameters of airfoil 

Variable Range Variable Range 
Rle [0.004,0.012] b2 [0.10,0.30] 

β (rad) [0.14,0.28] b3 [0.10,0.30] 
'β (rad) [0.00,0.14] b1′ [0.05,0.30] 
△zte/c [-0.005,0.005] b2′ [0.05,0.30] 

b1 [0.05,0.20] b3′ [0.10,0.25] 
 
In order to compare aerodynamic optimization results, three optimization methods are used to airfoil 

design combined with genetic algorithm: Kriging surrogate model, Adaptive Kriging surrogate model, 
and High Precision CFD model. The optimization results are shown in Fig. 5~7 and Table 3, and the 
optimized airfoils with smaller drag coefficients than the original airfoils can be obtained by three 
methods. 

 
Table 3. Optimization results 

Model S CL CD 
Initial airfoil 0.0778 0.6966 0.01368 

Kriging 0.0779 0.6937 0.01251 
Adaptive Kriging 0.0794 0.6874 0.01200 

High Precision 0.0788 0.6966 0.01210 
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Figure 5. Optimized airfoil geometry           Figure 6. Optimized airfoil pressure distribution 

 

 

 
Figure 7. Comparison of pressure contours 

 
As presented in Fig. 5, in geometry shape, the upper wing becomes flatter, the lower wing becomes 

thicker, and concave increases in the latter half. As presented in Fig. 6~7, on the aerodynamic 
characteristics, the pressure distribution of the airfoils optimized by adaptive Kriging surrogate model 
and high precision CFD model are more placid than the initial RAE2822 airfoil, the shock wave in upper 
surface almost disappear completely, which shows that the decrease of drag force of the airfoil mainly 
comes from the decrease of the shock wave drag. As presented in Table 3, the drag coefficient of the 
airfoil optimized by Kriging surrogate model is reduced by 8.53%, the drag coefficient of the airfoil 
optimized by adaptive Kriging surrogate model is reduced by 12.24%, and the drag coefficient of the 
airfoil optimized by high precision CFD model is reduced by 11.5%. The flow field of 3225 individuals 
was calculated by using a high precision model to optimize airfoils, meanwhile only 350 individuals 
were used in the surrogate model, which greatly reduced the time of aerodynamic optimization design. 
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The results above show that the adaptive Kriging surrogate model developed in this paper has better 
performance than the common Kriging surrogate model, and is close to the effect of High Precision 
CFD model. 

5.  Conclusion 
In this paper, an adaptive searching Kriging surrogate model is studied in detail, and the typical function 
is used to test the established model. The results show that the accuracy of the adaptive surrogate model 
is better than that of the common surrogate model under the same number of samples. In ensuring the 
same result accuracy, the workload of establishing surrogate model can be effectively reduced by using 
this adaptive method. The results of airfoil optimization example show that the adaptive searching 
method can predict aerodynamic performance better and has certain practical significance for 
aerodynamic optimization design. Due to the complexity of the aircraft aerodynamic optimization 
problem, the generalization ability and prediction accuracy of adaptive Kriging surrogate model still 
need to be improved, and the development of more rapid algorithm, which will become the main 
direction to improve the efficiency of optimization design. 
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