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Abstract. A horizontal porous layer saturated by a non–Newtonian fluid is taken into account. The fluid is
a Ostwald–De Waele type of fluid. The layer is heated from below while the upper boundary is isothermal.
The lower boundary is impermeable and the upper one is free. A fully developed basic throughflow is
considered. The basic state is perturbed by employing small amplitude perturbations such that a linear
stability analysis is performed. The disturbances are assumed to be normal modes and a system of ordinary
differential equations governing the perturbation dynamics is obtained. These ODEs form an eigenvalue
problem that is solved numerically: both the neutral stability curves and the threshold values for the onset
of convection are presented.

1. Introduction
The thermally driven instabilities in fluid saturated porous media have been deeply investigated in the last
century. The milestone studies of this research area are by Horton and Rogers [1] and Lapwood [2] who
studied the so called Darcy–Bénard problem or, alternatively, Horton–Rogers and Lapwood problem:
the analogous of the Rayleigh–Bénard problem when fluid saturated porous media are considered. The
literature is mainly focused on the stability analysis of Newtonian fluids [3], while the stability analysis
of non–Newtonian fluids saturating porous media is a topic that has been developing in the recent years.
In this direction, some work has been done by Barletta and Nield [4] and by Celli et al. [5] by considering
the classical Prats problem where a power–law fluid saturates the porous layer. The Prats problem
is a variant of the Horton–Rogers and Lapwood problem with a horizontal throughflow. The system
examined in this work is a horizontal porous layer saturated by a power–law fluid subject to a horizontal
throughflow. The lower boundary is impermeable with a prescribed heat flux. The upper boundary
is isothermal and isobaric. The novelty of the work is introduced by considering a permeable upper
boundary. This hydrodynamic boundary condition may, in fact, influence drastically the threshold for
the onset of thermal convection, as proved by Barletta [6]. The linear stability analysis of the basic state
for the onset of thermal convection is performed. The momentum balance equations employed is the
extended Darcy law for power–law fluids. The fluid is assumed to be incompressible and the energy
balance equation employed is a convection–conduction equation with neither energy sources nor energy
sinks.
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Figure 1. A sketch of the fluid saturated porous layer together with the boundary conditions

2. Mathematical model
An Ostwald–De Waele fluid saturating a horizontal porous layer is heated from below by prescribing a
constant heat flux q0. A basic horizontal throughflow is present. The lower boundary is impermeable
while the upper boundary is open and isothermal at temperature T0. The porous layer has thickness H
and it is infinitely wide in both the horizontal directions. A sketch of the horizontal porous layer together
with the boundary conditions is displayed in Fig. 1. A modified Darcy’s law, together with the Oberbeck-
Boussinesq approximation, is employed to model the momentum transport. The fluid is incompressible
and no source/sink terms are considered in the local energy balance equation. The governing equations
employed are

∇ ·u = 0,
η

K
|u|n−1u =−∇p−ρ0gβ

(
T −T0

)
,

σ
∂T
∂ t

+u ·∇T = χ∇
2
T ,

y = 0 : v = 0, −k
∂T
∂y

= q0,

y = H :
∂v
∂y

= 0, T = T0,

(1)

where the line over the variables identifies dimensional quantities, x = (x,y,z) is the Cartesian
coordinates vector, u = (u,v,w) is the filtration velocity vector, η is the consistency factor measured
in [Pa · sn], K is the generalised permeability of the porous medium measured in [mn+1], n is the power–
law index, p is the total pressure head, ρ0 is the fluid density evaluated at the reference temperature T0, g
is the gravitational acceleration vector, β is the thermal expansion coefficient of the fluid, σ is the ratio
between the thermal capacity of the porous medium saturated by the fluid and the thermal capacity of
the fluid, t̄ it the time, χ is the actual thermal diffusivity coefficient of the porous medium measured in
[m2 · s−1] and k is the effective thermal conductivity of the fluid saturated porous medium. The scaling

x
H
→ x,

χ

σ H2 t→ t,
H
χ

u→ u,
K
µ

(
H
χ

)n

∇p→∇p,
T −T0

∆T
→ T, (2)
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where ∆T = q0 H/k, is employed to obtain the dimensionless governing equations, namely

∇ ·u = 0,

∇×
(
|u|n−1u

)
= R∇× (T ey) ,

∂T
∂ t

+u ·∇T = ∇
2T,

y = 0 : v = 0,
∂T
∂y

=−1,

y = 1 :
∂v
∂y

= 0, T = 0,

(3)

where ey is the unit vector in the y–direction. The curl operator is applied to the momentum balance equa-
tion to eliminate the contribution of the pressure. The modified Darcy–Rayleigh number R in Eq. (3) is
defined as

R =
ρ gβ K Hn ∆T

χn µ
, (4)

where g is the modulus of gravitational acceleration.

3. Linear stability analysis
A fully developed basic flow is assumed such that ub = (U0,0,0), where U0 is the velocity of the
throughflow and the subscript b indicates the basic state quantities. The dimensionless basic velocity
is ub = (Pe,0,0), where Pe =U0 H/χ is the Péclet number.
By assuming that the temperature depends only on the vertical direction y, the Eq. (3) yields

Tb = 1− y. (5)

The basic state just defined is perturbed by superposing a small amplitude disturbance to it, namely

u = ub + εU, T = Tb + εΘ, (6)

where ε � 1. Equation (6) is substituted into Eq. (2) to obtain the following linearised governing
equations for the disturbances:

∂U
∂x

+
∂V
∂y

+
∂W
∂ z

= 0,

∂V
∂ z
− ∂W

∂y
=

R
Pen−1

∂Θ

∂ z
,

n
∂U
∂ z
− ∂W

∂x
= 0,

n
∂U
∂y
− ∂V

∂x
=− R

Pen−1
∂Θ

∂x
,

∂Θ

∂ t
+Pe

∂Θ

∂x
−V = ∇

2
Θ,

y = 0 : V = 0,
∂Θ

∂y
=−1,

y = 1 :
∂V
∂y

= 0, Θ = 0.

(7)



37th UIT Heat Transfer Conference  

Journal of Physics: Conference Series 1599 (2020) 012015

IOP Publishing

doi:10.1088/1742-6596/1599/1/012015

4

By manipulating Eq. (7), one may obtain a system of equations that contains only two dependent
variables (V,Θ), namely

∂ 2V
∂x2 +n

∂ 2V
∂y2 +n

∂ 2V
∂ z2 =

R
Pen−1

(
∂ 2Θ

∂x2 +n
∂ 2Θ

∂ z2

)
,

∂Θ

∂ t
+Pe

∂Θ

∂x
−V = ∇

2
Θ,

y = 0 : V = 0,
∂Θ

∂y
=−1,

y = 1 :
∂V
∂y

= 0, Θ = 0.

(8)

The problem (8) can be solved by assuming that the perturbations have the form of plane waves

V (x,y,z, t) = f (y)eη tei(αxx+αzz+ωt),

Θ(x,y,z, t) = h(y)eη tei(αxx+αzz+ωt),
(9)

where α = (α2
x +α2

z )
1/2 is the wavenumber, ω is the angular frequency and η is the growth/decay rate.

The parameters (αx,αz,η ,ω) are real numbers while the eigenfunctions ( f ,h) are complex valued. As
function of the sign of η , the disturbances in Eq. (9) behave differently for t→ ∞:

• η > 0 yields growing disturbances (possibly unstable configuration)
• η = 0 yields neutral stability configuration
• η < 0 yields decaying disturbances (stable configuration)

Since this linear stability analysis is focused on the neutral stability configurations, in the following
η = 0. By substituting definitions (9) into Eq. (8), by employing the rescaled angular frequency
ω̃ = ω−αxPe and by employing the rescaled Darcy–Rayleigh number

R̃ =
R

Pen−1 , (10)

one obtains the following set of ordinary differential equations

f ′′−
α2 +(n−1)α2

z

n
( f − R̃h) = 0,

h′′−
(
α

2− i ω̃
)

h+ f = 0,
y = 0 : f = 0, h′ = 0,
y = 1 : f ′ = 0, h = 0.

(11)

By indicating with φ the inclination angle of the wave vector α= (αx,0,αz) to the x–axis and by defining
the rescaled power–law index

ñ =
n

1+(n−1)sin2
φ
, (12)

one may simplify Eq. (11) to obtain

f ′′− α2

ñ
( f − R̃h) = 0,

h′′−h
(
α

2− i ω̃
)
+ f = 0,

y = 0 : f = 0, h′ = 0,
y = 1 : f ′ = 0, h = 0.

(13)
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Figure 2. Neutral stability curves R̃(α) for different values of ñ

4. Results
The solution of the eigenvalue problem Eq. (13) is carried out by coupling the Runge-Kutta method with
the shooting method. The Runge–Kutta method solves the following initial value problem:

f ′′− α2

ñ
( f − R̃h) = 0,

h′′−h
(
α

2− i ω̃
)
+ f = 0,

y = 0 : f = 0, f ′ = ξ1 + iξ2, h = 1, h′ = 0,

(14)

where the conditions f ′ = ξ1+ iξ2 and h = 1 are added to complete the initial conditions, the parameters
ξ1 and ξ2 are unknowns and h = 1 is a scale fixing condition that can be imposed since the system (14)
is homogeneous. The shooting method employs the solution obtained by the Runge–Kutta method to
satisfy the target conditions at y = 1, namely

f ′ = 0, h = 0. (15)

The shooting method allows one to obtain the neutral stability curves R̃(α): one curve for each value
of ñ. The neutral stability curves are displayed in Fig. 2: the curves monotonically move upward for
increasing values of ñ. The value of the modified angular frequency is found to be always zero, ω̃ = 0,
for every solution obtained. One can thus induce that ω = αxPe. Moreover, a zero modified angular
frequency allows one to induce that the eigenvalue problem (13) is real valued.
The minima of the curves in Fig. 2 define the threshold parametric configurations for the onset of thermal
convection. These values are conventionally named “critical values” and are indicated with the subscript
cr. The curves R̃cr(ñ) and α̃cr(ñ) are reported in Table 1. It is worth noting that the case ñ = 1 yields
n= 1. For ñ= 1 one, in fact, obtains the values reported in the literature for Newtonian fluids as presented
in Tab 6.1 of Ref. [3].
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Table 1. Critical values R̃cr and αcr for 0.1 6 ñ 6 2

ñ R̃cr αcr

0.1 7.0973158 1.0738772
0.2 8.9134045 1.2208534
0.3 10.359693 1.3256991
0.4 11.624207 1.4104158
0.5 12.775716 1.4827223
0.6 13.848240 1.5464415
0.7 14.861500 1.6037971
0.8 15.828121 1.6562145
0.9 16.756758 1.7046690
1.0 17.653653 1.7498612
1.1 18.523479 1.7923129
1.2 19.369847 1.8324247
1.3 20.195615 1.8705112
1.4 21.003092 1.9068248
1.5 21.794175 1.9415710
1.6 22.570446 1.9749199
1.7 23.333242 2.0070137
1.8 24.083704 2.0379731
1.9 24.822816 2.0679009
2.0 25.551432 2.0968860

5. Conclusions
The linear stability of a Ostwald–De Waele fluid saturating a porous layer is tested for the onset of thermal
convection. The porous layer is heated from below and the upper boundary is open and isothermal. The
eigenvalue problem obtained by employing the normal modes method depends on the modified Darcy–
Rayleigh number R̃ and the modified power–law index ñ. The critical values of the governing parameters
are obtained numerically. The most relevant results are the following:

• The angular frequency of the perturbation is obtained analytically by inducing, from the numerical
solutions, that the modified angular frequency is equal zero
• The modified power–law index ñ has a monotonic influence on the critical values: increasing values

of ñ yield higher values of R̃cr and thus more stable configurations
• The case ñ = 1 coincides with the Newtonian fluid case and the critical values obtained agree with

the values reported in the literature: R̃cr = 17.653653 and αcr = 1.7498612

References
[1] Horton C and Rogers Jr F 1945 Journal of Applied Physics 16 367–370
[2] Lapwood E 1948 Mathematical Proceedings of the Cambridge Philosophical Society 44 508–521
[3] Nield D A and Bejan A 2017 Convection in porous media 5th Edition
[4] Barletta A and Nield D A 2011 Physics of Fluids 23.1 013102.
[5] Celli M et al. 2017 Transport in Porous Media 118(3) 449–471
[6] Barletta A 2015 Journal of Fluid Mechanics 770 273–288


