
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Half-meter Scale Superconducting Magnetic
Bearing for Cosmic Microwave Background
Polarization Experiments
To cite this article: Yuki Sakurai et al 2020 J. Phys.: Conf. Ser. 1590 012060

 

View the article online for updates and enhancements.

You may also like
Superconducting magnetic bearings with
bulks and 2G HTS stacks: comparison
between simulations using H and A-V
formulations with measurements
F Sass, D H N Dias, G G Sotelo et al.

-

Preparation of dodecyltrimethoxysilane
surface organic LDHs and application in
aging resistance of SBS modified bitumen
Canlin Zhang, Minxuan Chen, Meng Yu et
al.

-

Load test of Superconducting Magnetic
Bearing for MW-class Flywheel Energy
Storage System
S Mukoyama, K Nakao, H Sakamoto et al.

-

This content was downloaded from IP address 18.119.131.178 on 25/04/2024 at 06:01

https://doi.org/10.1088/1742-6596/1590/1/012060
https://iopscience.iop.org/article/10.1088/1361-6668/aa9dc1
https://iopscience.iop.org/article/10.1088/1361-6668/aa9dc1
https://iopscience.iop.org/article/10.1088/1361-6668/aa9dc1
https://iopscience.iop.org/article/10.1088/1361-6668/aa9dc1
https://iopscience.iop.org/article/10.1088/2053-1591/ac0bd5
https://iopscience.iop.org/article/10.1088/2053-1591/ac0bd5
https://iopscience.iop.org/article/10.1088/2053-1591/ac0bd5
https://iopscience.iop.org/article/10.1088/1742-6596/871/1/012090
https://iopscience.iop.org/article/10.1088/1742-6596/871/1/012090
https://iopscience.iop.org/article/10.1088/1742-6596/871/1/012090
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvKd-6FIQDfg8F_C0mJdA67qimMVM4C6aJcKqqilOb0KhGF4POrhcYKQM6fe6vngpApdSojksv7ARkpz1JH-Ui9vc3UG1xy6-pstghlZK5woWnKTN7GfcbS9m4e6Yle9hCyuPMVPzmoGWh1JaPS4YaEDrZwcfe-eXUeNjLW7YqsU1-GDvHMZI6QNEs8AQVpJw9bfKAyvZSmB8O3AcQoesWaUD1FQLhJZD-oEL5q_Elks6n1FpXMFYEVXHTRORzL-8ggRAcX6ShMH3yjvkNgD-gu7K-Z_GmkcPK2LzESvF6X_WzT34a9jiuSGJSG8-M5cX_vhKR0bNvpEZsSmbmK5fM&sig=Cg0ArKJSzAWb2duizX6e&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

32nd International Symposium on Superconductivity (ISS2019)

Journal of Physics: Conference Series 1590 (2020) 012060

IOP Publishing

doi:10.1088/1742-6596/1590/1/012060

1

 

 

 

 

 

 

 

Half-meter Scale Superconducting Magnetic Bearing for 
Cosmic Microwave Background Polarization Experiments 

Yuki Sakurai1, Peter Ashton2,3,1, Akito Kusaka3,4,5,6, Charles A. Hill2,3, Kenji 
Kiuchi4, Nobuhiko Katayama1, Osamu Tajima7 
 
1 Kavli Institute for The Physics and Mathematics of The Universe (WPI), The 
University of Tokyo, Kashiwa, Chiba 277-8583, Japan 
2 Department of Physics, University of California, Berkeley, CA 94720, USA,  
3 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, 
USA 
4 Department of Physics, The University of Tokyo, Tokyo 113-8654, Japan,  
5 Kavli Institute for the Physics and Mathematics of the Universe (WPI), Berkeley 
Satellite, the University of California, Berkeley 94720, USA 
6 Research Center for the Early Universe, School of Science, The University of Tokyo, 
Tokyo 113-0033, Japan 
7 Department of Physics, Kyoto University, Kyoto 606-8502, Japan  
E-mail: yuki.sakurai@ipmu.jp 

Abstract We report the development of a large-diameter superconducting magnetic bearing 
(SMB) used in a continuously rotating cryogenic half-wave plate (HWP) polarization modulator 
for cosmic microwave background (CMB) polarization experiments. A precise measurement of 
the CMB polarization will place tighter constrains on cosmic inflation, describing the rapid 
expansion of the early universe. The polarization modulator is a critical instrument for 
suppressing 1/f contamination, which is mainly caused by atmospheric noise, and for mitigating 
systematic uncertainties that arise when differencing orthogonal polarization detectors. To 
ensure a sufficient field of view and to reduce thermal emission, the polarization modulator must 
have a clear-aperture diameter of > 500 mm and must operate at cryogenic temperatures. We 
constructed a superconducting magnetic bearing (SMB) with an inner diameter of 550 mm, 
which is the largest used in any CMB polarization experiment to date. We tested the friction and 
stiffness of the bearing at liquid nitrogen temperatures. The measured total loss is 0.4 W and the 
spring constant is >105 N/m, which satisfies typical experimental requirements. Furthermore, we 
performed a performance test by changing the number of disk-shaped YBCO tiles, and then 
confirmed that the SMB performance was proportional to the YBCO volume.  

1.  Introduction 
Superconducting technologies are not only applied to industrial applications but also to fundamental 
physics experiments in various observation instruments, such as detectors and accelerators. In this paper, 
we describe a unique applications of the magnetic levitation technique: a superconducting magnetic 
bearing (SMB) for polarization modulators used in cosmic microwave background (CMB) polarization 
experiments.  
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The CMB is electromagnetic radiation from the Big Bang, the oldest light in the universe, which we 
can observe isotropically in whole sky even today. Moreover, CMB observation satellites can detect 
CMB intensity precisely, and their data have played a significant role in the formation of current 
cosmology. However, mysteries such as the flatness and horizon problems still exist in modern 
cosmology. As the cosmic inflation theory [1,2] is considered to solve these problems, the experimental 
verification of inflation is one of the most important research topics in both cosmology and high-energy 
physics. Cosmic inflation is the rapid expansion of the universe ~ 10−38 seconds after the beginning of 
the universe. It is predicted that primordial gravitational waves are generated during inflation, and a 
characteristic “B-mode” pattern is imprinted in the CMB polarization by these primordial gravitational 
waves. Therefore, the inflation theory can be verified experimentally by a precise measurement of the 
B-mode polarization. 

In a CMB polarization experiment, a key instrument is the polarization modulator based on the 
continuously rotating half-wave plate (HWP), an optical element that causes a half-wave phase shift of 
an linearly polarized incident signal [3]. It consists of the HWP and a rotation mechanism and   
modulates the CMB polarization signal. This modulation suppresses 1/f contamination mainly caused 
by atmospheric noise and mitigates the systematic uncertainties that arise when differencing between 
orthogonal polarization detectors. In order to suppress thermal noise, the HWP must be installed in a 
cryogenic environment. Thus, it is crucial to develop a completely contactless rotation mechanism (a 
bearing and drive motor) to achieve a stable rotation at low temperatures. A superconducting magnetic 
bearing (SMB) [4] is most suitable for this application. The polarization modulator using an SMB had 
been previously installed in a balloon experiment EBEX [5], and its benefits have been illuminated. As 
such, an on-going ground experiment, Simons Array [6], and a next-generation ground experiment, 
Simons Observatory (SO) [7], have employed the SMB in their polarization modulators.  

One of the fundamental challenges in using the SMB in future experiments --represented by SO in 
this paper-- is the diameter limitation.  To ensure a sufficient field of view, the SMB must have a clear-
aperture diameter of > 500 mm. Therefore, we constructed an SMB with an inner diameter of 550 mm, 
which is the largest used in any CMB polarization experiment to date. In this paper, we describe the 
design of the developed SMB with the largest diameter for polarization modulators and its mechanical 
and thermal characteristics from liquid-nitrogen testing. 

2.  SMB and experimental setup 

2.1.  SMB design and manufacturing 

The representative requirements for the polarization modulator in ground experiments, which are 
derived from science goals and typical telescope configurations, are summarized in Table 1. Based on 

Figure 1. The left photograph shows a 32-segmented NdFeB permanent magnet ring with 
an inner diameter of 550mm, and the right photograph shows the ring-shaped 
superconductor consisting of 48 segmented cylinder YBCO bulks. 

543mm 550mm 
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these requirements, we designed and manufactured an SMB system for a polarization modulator on SO. 
It consists of a permanent magnet ring and a ring-shaped high-temperature superconductor bulk, as 
shown in Figure 1. The limitation on the SMB diameter in prior experiments is < 460 mm, which is 
driven by the manufacturing limitations of the magnet ring for use at cryogenic temperatures.  At room 
temperature, there are many examples of large continuous magnetic circuits with a diameter > 1 m for 
a magnetic resonance imaging (MRI) [8] and for Spring-8 [9]. However, at cryogenic temperatures, a 
dedicated design is required that considers thermal contraction and magnetic field variation. Therefore, 
we designed and manufactured a magnet ring with an inner diameter of 550 mm considering cryogenic 
properties, with the collaboration of Shin-Etsu Chemical Co., Ltd. It consists of 32 segmented NdFeB 
(N52) magnets and a G10 glass-epoxy holder.  The width and height of the magnet are 15 mm to ensure 
sufficient magnetic field strength, which scales with the magnetized volume. The total mass of the ring 
magnet is 4.6 kg, and the inner and outer diameters are 550 mm and 620 mm, respectively. The gap 
between magnet segments is designed at 0.3 mm to consider for thermal contraction at around 50 K and 
assembly accuracy. The magnet and holder are glued by a Stycast 2850FT. To seal the magnet, a 1 mm 
thin cover with ventilation screw holes is installed on the surface of the magnet. 

The superconductor ring consists of 48 segmented single-seeded YBCO bulks and an aluminum 
(A6061) holder. The YBCO bulks are supplied by CAN SUPERCONDUCTORS, s.r.o. Each bulk is 
cylindrical, and the diameter and height are 28 mm and 10 mm, respectively. The levitation force 
specification for these bulks at 77 K on the YBCO bulk surface is > 60N. The YBCO bulk is magnetized 
using a 20 mm × 20 mm NdFeB permanent magnet of ~ 0.5 Tesla magnetic field at the surface. The 
YBCO bulks and glued into the holder by Stycast 2850FT. The thickness of the holder is 8 mm, and the 
YBCO bulks are exposed above the holder’s surface by 2 mm. 

Inner/outer 
diameter 

Rotation 
speed 

Rotor/stator 
temperature 

Heat 
dissipation Total mass Rotor position 

tolerance 
Φin > 500 mm 
Φout < 1000 mm 

2 Hz Trotor < 60 K 
Tstator < 100 K < 1 W 40 kg < 1 mm 

2.2.  Experimental setup 
For the performance test of the developed SMB, we built an experimental setup in liquid nitrogen, as 
shown in Figure 2. We prepared a 1 m diameter stainless steel container with a glass fiber cloth and 
styrofoam for thermal insulation. A cryogenic hall sensor HGT-3020 from Lake Shore Cryogenics, Inc. 
is mounted on the surface of one of the YBCO bulks.  The sensor was calibrated by the company 

Table  1. Typical requirements for the polarization modulator in current and planned CMB ground 
experiments. 

Figure 2. The left photograph shows the SMB performance test in liquid nitrogen. The right 
plot shows the magnetic field distribution vs. ring magnet angle, measured by a cryogenic hall 
sensor mounted on the surface of one of the YBCO bulks. 

Hall sensor 

Encoder 
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considering nonlinearity between the output voltage and the magnetic field, as well as temperature and 
angle effects. The zero field is calibrated within a magnetic shield, and the accuracy specification of the 
sensor is ±1%. An optical encoder composed of an infrared LED and a silicon photodiode placed face 
to face is installed. An encoder disk with 360 slots on either side of an encoder disk with 360 slots, 
which is installed on top of the rotor magnet ring. The initial distance between the rotor magnet and the 
stator YBCO is 6 mm. We prepared a dedicated jig to establish the levitation height and the centering 
of the rotor magnet. 
 At room temperature, the YBCO stator and the rotor magnet with the dedicated jig are installed in the 
container. In addition, the hall sensor and the encoder with their own jig is mounted on the YBCO holder. 
Then, the liquid nitrogen is poured into the container. After field cooling, the dedicated jig is removed, 
and the rotor magnet levitates. In the spin-down and stiffness tests, the rotation and the vibration of the 
rotor were applied by hand. 

3.  Performance test  

3.1.  Magnetic field homogeneity 
The main sources of SMB losses are hysteresis and eddy currents. The energy losses by hysteresis Ph 
and eddy current Pe can be described as 

!! ∝
∆$"
%#

, !$ ∝	∆$%	,	 (1) 

where ΔB is the magnetic field homogeneity of the rotor magnet and Jc is a critical current density of 
the YBCO bulks, which scales inversely with temperature. The magnetic field homogeneity is the key 
parameter that determines the SMB loss. We measured the magnetic field fluctuation using the 
cryogenic hall sensor as shown in the right plot of Figure 2. There are 32 spikes in the plot corresponding 
to the gap between magnet segments. The peak-to-peak homogeneity of the magnetic field is 4.8%, 
which is slightly better than that of the prior experiment [6]. 

3.2.  Spin-down measurement 
We conducted a spin-down test to measure power dissipation from the SMB [10,11]. The rotor is 
accelerated to ~1.2 Hz by hand. The maximum speed is limited by air resistance.  Then the rotor 
decelerates due to magnetic and air friction. The rotation frequency during the spin down is shown in 
the left plot of Figure 3. The fit function is 

((*) = (& + 2/('0(*), (2) 

Figure 3. The left plot shows the SMB spin-down data. The blue dot shows the measured data 
and the dashed red line shows the fit line. The right plot shows the loss as a function of the 
rotation frequency. The blue, orange, green lines show the total loss, the hysteresis loss, and the 
eddy current + air friction losses, respectively. 
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where f(t) is a rotation frequency, a(t) is a rotation deceleration and a0, a1 are deceleration terms due to 
hysteresis and eddy current + air friction, respectively. The heat dissipation P can be described as  

 ! = 3 × 5,  3 = '
%6(7+,*

% − 7-.%),  5 = ( × 8 = ( × 2/0 (4) 

where I is the inertia of the rotor magnet, 5 is the load torque on the rotor and m is the rotor mass. Rout 

and Rin represent the inner and outer radius of the rotor magnet, respectively.  8 and f are the angular 
velocity and the rotation frequency of the rotor during continuous rotation, respectively. The total heat 
dissipation from the SMB is 0.39 W assuming 2 Hz continuous rotation, including due to air resistanc. 
This result satisfies the typical requirement of < 1.0 W. The estimated hysteresis loss is 0.08W, while 
the eddy current + air friction loss is 0.31 W. The right plot of Figure 3 shows the SMB losses for each 
continuous rotation speed. 

3.3.  Stiffness measurement 
Another critical parameter to SMB performance is the bearing stiffness. We must trace rotor 
displacement due to gravity because it corresponds to HWP position in the polarization modulator. We 
modeled the stiffness as a spring constant, assuming the SMB to be a simple spring. The spring constant 
of the SMB increases in proportion to the gradient of the magnetic field, and thus this assumption is 
conservative. The levitating rotor vibrates according to its eigenfrequency [12]. The left plot of Figure 
4 shows the magnetic field distribution when the rotor is hit multiple times, while the right plot shows 
the Fourier transform of the left plot. The first peak corresponds to the eigenfrequency of the SMB. The 
2rd and 3rd peaks in the plot correspond to the 3rd and 5th harmonics because the SMB is assumed to be a 
spring with only one fixed end. The measured eigenfrequency f0 is 24 Hz. The spring constant k and the 
rotor displacement due to gravity x can be calculated as  

9 = 68% = 6(2/0&)%, : = 6;
9 , (4) 

where 8 is angular frequency and m is the rotor mass. The calculated spring constant and the rotor 
displacement are 1.0 × 10/  N/m and 0.46 mm, respectively. A typical requirement of the rotor 
displacement is < 1.0 mm, and therefore this test confirms that the developed SMB is sufficiently stiff 
for ground-based applications. Note that the rotor displacement due to the SMB stiffness is independent 
of alignment accuracy. 

Figure 4. The left plot shows the magnetic field distribution when the ring magnet is struck. 
The right plot shows the Fourier transformed distribution of the left plot. The blue and black 
line shows the measured data with and without hitting. 
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4.  Number of YBCO dependence 
In order to test the dependence of rotor stiffness on YBCO configuration, the performance test was done 
with various numbers of YBCO bulks. The number of YBCO tiles were varied from 48 to 24 and 12 
while keeping the gap between bulks equal, shown in Figure 5. We repeated the SMB performance test 
with the same procedure described in Section 3. The right plot of Figure 5 shows the magnetic field 
distribution for each YBCO configuration. The magnetic field strength and fluctuation increased when 
reducing the number of YBCO, which suggests a reduction in spring constant and hence levitation force. 

We conducted the spin-down test and derived the SMB losses for each number of YBCO tiles, as 
shown in the left plot of Figure 6.  The measured hysteresis loss increases in proportion to the cube of 
∆$, as shown in Equation (1). As the eddy current loss, which depends on the square of ∆$, cannot be 
classified due to air friction. Because the air friction term depends on the convection state of nitrogen in 
each experiment, it is difficult to model and distinguish it from eddy currents. We performed the stiffness 
test for each number of YBCO tiles, as shown in the right plot of Figure 6. The measured eigenfrequency 
and the derived spring constant change in proportion to the number of YBCO tiles. The obtained 
parameters are summarized in Table 2.  

These results are consistent with the levitation force model for the SMB. It is described as  

where F is the levitation force of the SMB, Ω01  is the cross-section of the superconductor, J is the critical 
current density, and B is the magnetic field density [14]. Comparing the case of 48 and 24 tiles, the 

Number of YBCO 48 24 12 
|B| 1.47 kG 1.65 kG 1.69 kG 
ΔB 0.09 kG 0.12 kG 0.13 kG 

Total loss at 2 Hz 0.428 W 0.491 W 0.537 W 
Hysteresis loss at 2 Hz 0.020 W 0.047 W 0.057 W 

Eddy current + air friction loss 
at 2 Hz 0.402 W 0.459 W 0.490 W 

Eigenfrequency 24 Hz 17 Hz 13 Hz 

Spring constant 1.0×105 

N/m 
5.2×104 

N/m 3.2×104 N/m 

Rotor displacement 0.46 mm 0.88 mm 1.49 mm 

@ = 	∫ (B × C)&
2#$ DΩ01 , (5) 

Table  2. Measured and derived parameters from the performance test 

Figure 5. The left photograph shows the YBCO superconductor ring by changing the number 
of YBCO bulks. The right plot shows the magnetic field distribution for the ring magnet angle.  
The blue, red, and green lines show the number of YBCO as 48, 24, and 12, respectively. 
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levitation force is determined by the variation in both the magnetic field density and the volume of the 
YBCO bulks. On the other hand, comparing the case of 24 and 12 tiles, the effect from the magnetic 
field density cannot be ignored considering the accuracy of the hall sensor. However, it is determined 
almost entirely by the variation of the YBCO volume, as the displacement of the rotor position 
corresponding to the magnetic field density is almost saturated due to the reduced magnetic field 
gradient. 
 

5.   Conclusion 
We designed and manufactured the world’s largest SMB used in a polarization modulator for next-
generation ground-based CMB polarization experiments. We conducted mechanical and thermal 
performance tests in liquid nitrogen.  

The peak-to-peak homogeneity of the magnetic field of the rotor magnet is measured to be 4.8 %, 
which is a slightly better result than that of prior experiments. The heat dissipation due to the SMB is 
derived from spin-down testing. The total loss at 2 Hz continuous rotation is 0.4 W, which satisfies the 
typical requirement of < 1.0 W. The bearing stiffness is evaluated as a spring constant. It is derived from 
the rotor eigenfrequency, which is measured by hitting the rotor magnet. The obtained spring constant 
is 1.0×105 N/m, and the corresponding rotor position displacement due to gravity is 0.46 mm, assuming 
a simple spring model. The typical requirement on the rotor position tolerance is < 1.0 mm, and therefore 
the bearing is confirmed to be sufficiently stiff. 

Furthermore, we carried out a performance test by changing the number of YBCO bulks, and we 
observed its impact on both loss and stiffness. These results are consistent with the SMB model, which 
predicts that the levitation height is proportional to the magnetic field density and the superconductor 
volume. 

There is much room to reduce the SMB loss and increase its stiffness. For example, the magnetic 
field homogeneity can be improved by introducing a dedicated uniform magnetic ring combining 
permanent magnets and magnetic yokes, and the levitation force can be increased by using a continuous 
superconductor ring instead of cylinder-shaped bulks. However, we confirmed that the tested SMB 
performance satisfies typical experimental requirements. Therefore, the developed SMB for the 
polarization modulator is functionally optimized in terms of performance, cost, lead time, and 
manufacturing complexity. 

 

Figure 6. The left and right plot shows the spin-down distribution and the Fourier transformed 
distribution of the magnetic field, respectively, when hitting the rotor magnet for each number 
of YBCO tiles. The blue, red, and green lines show the number of YBCO as 48, 24, and 12, 
respectively. 
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