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Abstract. In this paper, a novel MTPA control scheme assisted by deep neural network is 

proposed based on a virtual signal injection concept. The deep neural network models the 

complex relationship between the electromagnetic torque and the d- and q-axis currents. The 

mathematical model in the conventional virtual signal injection MTPA control is substituted by 

the deep neural network. In this way, the MTPA control errors of conventional mathematical 

model based MTPA control schemes and conventional virtual signal injection based MTPA 

control schemes due to the neglect of the derivatives of machine parameters with respect to 

current angle or d-axis current can be avoided. The proposed control scheme was assessed by 

simulations under various operating conditions. Simulation results illustrate that the proposed 

MTPA control scheme could control the IPMSM operating on the MTPA points accurately and 

the errors caused by the neglect of the derivatives of machine parameters with respect to current 

angle or d-axis current were avoided.  

1. Introduction 

The interior permanent magnet synchronous machines (IPMSM) have the advantages of high efficiency, 

high power density and wide constant power operating range. In order to achieve the efficiency optimal 

control of IPMSM drives, the maximum torque per ampere (MTPA) control is necessary. However, the 

IPMSMs are well known for their machine parameter uncertainty and non-linear characteristics due to 

the high level of magnetic saturation, cross-coupling effects and parameter dependency on temperature, 

which bring great difficulties in achieving accurate MTPA control in real applications.  

The existing MTPA control schemes for IPMSM drive reported in the literature can be broadly classified 

into three categories, i.e., look-up table based methods [1], the mathematical model based techniques [2] 

and the online search-based techniques [3]. The look-up table based methods require experiments or 

numerical analyses to obtain the data in look-up tables. However, to obtain the data are time-consuming 

and require considerable resources and the accuracy of such control schemes cannot be guaranteed due 

to the manufacture tolerance, material property variations and temperature influence. The online-search-

based MTPA control schemes [3], including the signal injection-based MTPA control schemes, adjust 

the current vector through perturbation until the MTPA condition is met. These MTPA control schemes 

are independent of machine parameters but need to inject perturbations into motor, which will cause 

additional losses and harmonics this greatly limits the scope of this kind of approaches for the MTPA 

operation. The mathematical model based MTPA control schemes calculate the optimal current angle 

or d-axis current online based on the mathematical model and machine parameters [2]. However, 
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according to the resent research [4], due to the neglect of the derivatives of machine parameters with 

respect to current angle or d-axis current, these MTPA control schemes lead to significant MTPA control 

errors at a relatively high current amplitude. In order to avoid the aforementioned issues suffered by the 

mathematical model based MTPA control schemes, a virtual signal injection control scheme considering 

machine parameter variations was proposed in [4]. Although this method could compensate the MTPA 

control error due to neglect of the derivatives of machine parameters with respect to current angle, it 

needs look-up tables of machine parameters and this greatly limits the applications of such method.  

Recently, a deep neural network (DNN) based motor torque modelling technique was proposed [5]. 

With the assistance of DNN, motor electromagnetic torque can be modelled accurately. In this paper, 

the DNN based motor torque modelling technique is combined with the virtual signal injection to 

achieve accurate MTPA control. The proposed control scheme is verified by simulations. It is shown 

that the proposed control scheme can track the MTPA operation points accurately. 

2. Principle of Existing Virtual Signal Injection  

The mathematical model of a three-phase IPMSM in the d-q reference frame with sinusoidal stator 

current excitation is shown in (1) to (5): 

𝑣𝑞 = 𝐿𝑞

𝑑𝑖𝑞

𝑑𝑡
+ 𝑅𝑖𝑞 + 𝑝𝜔𝑚𝐿𝑑𝑖𝑑 + 𝑝𝜔𝑚𝛹𝑚 (1) 

𝑣𝑑 = 𝐿𝑑

𝑑𝑖𝑑

𝑑𝑡
+ 𝑅𝑖𝑑 − 𝑝𝜔𝑚𝐿𝑞𝑖𝑞 (2) 

𝑇𝑒 =
3𝑝

2
[𝛹𝑚𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] (3) 

𝑖𝑑 = −𝐼𝑎𝑠𝑖𝑛(𝛽) (4) 

𝑖𝑞 = 𝐼𝑎𝑐𝑜𝑠(𝛽) (5) 

Where 𝑣𝑑 , 𝑣𝑞 are the d- and q-axes stator voltages; 𝑖𝑑 , 𝑖𝑞,𝐼𝑎 are the d- and q-axes stator currents and the 

current vector amplitude; R is the stator phase resistance; 𝐿𝑑 , 𝐿𝑞 are the d- and q-axes inductances; 𝑇𝑒 is 

the electromagnetic torque; p is the number of pole pairs of the motor; 𝜔𝑚 is the rotor angular speed in 

rad/s; 𝛹𝑚 is the flux linkage due to permanent magnet excitation; 𝛽 is the current angle between the 

current vector and the q-axis, also known as the leading angle. 

According to the principle of the virtual signal injection MTPA control [4], if a small high frequency 

sinusoidal virtual signal ∆𝛽  with an angular frequency of 𝜔ℎ  is mathematically added to the stator 

current angle, 𝛽. The corresponding d- and q-axis currents, 𝑖𝑑
ℎ and 𝑖𝑞

ℎ, can be expressed in (6) and (8), 

respectively. 

∆𝛽 = 𝐴𝑠𝑖𝑛(𝜔ℎ𝑡) (6) 

𝑖𝑑
ℎ = −𝐼𝑎𝑠𝑖𝑛(𝛽 + 𝛥𝛽) (7) 

𝑖𝑞
ℎ = 𝐼𝑎𝑐𝑜𝑠(𝛽 + 𝛥𝛽) (8) 

Substituting (1), (2), (7) and (8) into (3), the calculated torque with the virtually injected high-frequency 

signal can be expressed in (9). 

𝑇𝑒_1
ℎ =

3𝑝

2
{

𝑣𝑞 − 𝑅𝑖𝑞

𝑝𝜔𝑚

− 𝐿𝑑(𝑖𝑑 − 𝑖𝑑
ℎ) +

𝑣𝑑 − 𝑅𝑖𝑑

𝑝𝜔𝑚𝑖𝑞

𝑖𝑑
ℎ} 𝑖𝑞

ℎ (9) 

If 𝑇𝑒_1
ℎ  is processed by the signal processing blocks as indicated in [4], the output of the signal processing 

blocks will be proportional to 𝜕𝑇𝑒_1
ℎ 𝜕𝛽⁄  and it will be used to adjust an integrator output until the 

𝜕𝑇𝑒_1 𝜕𝛽⁄  equals zero. In this way, the integrator will adjust the reference d-axis current until the MTPA 

operation point is reached [4].  

However, as indicated in [4], due to the neglect of the derivative of machine parameters with respect to 

the current angle, the virtual signal injection-based MTPA control consists errors. Although [4] proposed 

a method to compensate the errors, the method requires look-up tables of machine parameters which are 
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difficult to be obtained. On another hand, [5] proposed a motor torque modelling technique based on a 

deep neural network (DNN). The proposed DNN based modelling technique could fit the nonlinear 

relationship between d- and q-axis currents and motor torque accurately, without knowing machine 

parameters. In this paper, the DNN based motor torque modelling technique is combined with the virtual 

signal injection and the details of the proposed control scheme will be given below.  

3. The Proposed MTPA Control Assisted by a Deep Neural Network 

3.1. Motor torque modelling technique based on a deep neural network 

As indicated in  [5], the complex relationship between the resultant torque and d- and q-axis currents 

can be modelled by a deep neural network, which is constituted by artificial neurons. The typical 

stricture of a deep neural network is shown in figure 1.  

 
Figure 1. The typical structure of a DNN 

 

As shown in figure 1, if the neural network has more than one hidden layers, the neural network is 

considered as a deep neural network. Otherwise, the neural network is a conventional shallow neural 

network. Since the deep neural networks have more hidden layers than the shallow ones, it possesses a 

stronger ability to approximate the complex relationship between the inputs and outputs [5]. According 

to (3), the electromagnetic torque is a function of d- and q-axis currents. Therefore, the inputs of the 

deep neural network are the d- and q-axis currents, and the outputs of the deep neural network is the 

electromagnetic torque. By training the deep neural network with different sets of d- and q-axis currents 

and their corresponding electromagnetic torque, the nonlinear relationship between torque and d- and q-

axis currents can be fitted by the deep neural network. More details of the modelling and training of the 

DNN can be found in [5].  

3.2. MTPA control of IPMSM drives assisted by a deep neural network 

According to Section 2, the main idea of the virtual signal injection based MTPA control is to virtually 

inject a disturbance into a motor torque model and to extract the information of 𝜕𝑇𝑒 𝜕𝛽⁄  through signal 

processing of the motor torque model outputs. Meanwhile, as mentioned in Section 3.1, the nonlinear 

relationship between torque and d- and q-axis currents can be modelled by a deep neural network. 

Therefore, based on this principle, in this paper, the motor torque model of conventional virtual signal 

injection based MPTA, i.e., the (9), is substituted by a motor torque model based on DNN. Since the 

training of the DNN only requires sets of d- and q-axis currents and their corresponding torque, which 

can be easily obtained by experiments, thus the difficulties of obtaining the machine parameters in [4] 

are avoided.  

The schematic of the proposed signal processing blocks of virtual signal injection assisted by a deep 

neural network is shown in figure 2. 

Input layer
output layer

hidden layers

Te
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Figure 2. The schematic of the proposed signal processing blocks of virtual signal injection assisted 

by a deep neural network 

 

As can be seen in figure 2, a virtual signal ∆𝛽 = 𝐴𝑠𝑖𝑛(𝜔ℎ𝑡) is added to the motor current angle 𝛽 

mathematically and the resultant d- and q-axis currents with the high-frequency components are 

calculated by (7) and (8), respectively. The resultant d- and q-axis currents with the high-frequency 

components are fed to a DNN to calculate the torque with high-frequency component 𝑇𝑒_2
ℎ . The 𝑇𝑒_2

ℎ  was 

processed by signal processing blocks and the output of the low-pass filter will be proportional to the 

𝜕𝑇𝑒_2 𝜕𝛽⁄  and will be fed to the integrator to adjust the reference d-axis current until the MTPA point is 

reached.  

It worth to notice that since the nonlinear relationship between d- and q-axis currents and motor torque 

is fitted by the DNN accurately, the 𝜕𝑇𝑒_2 𝜕𝛽⁄  contains the components of the derivative of machine 

parameters with respect to current angle. Therefore the MTPA control error caused by the neglect of the 

derivative of machine parameters with respect to current angle [4] can be avoided. The overall schematic 

of the proposed MTPA control is shown in figure 3. 

 
Figure 3. The overall schematic of the proposed MTPA control 

 

As can be seen from figure 3, the resultant reference d-axis current generated by figure 2 is fed to the PI 

current controllers together with the reference q-axis current as the d- and q-axis current commands to 

regulate the motor current efficiently.  

4. Simulation Result 

In order to verify the proposed MTPA control scheme, simulations have been performed based on a 10 

kW IPMSM drive which is designed for traction applications for wide constant power operation. Tests 

were first performed to track the MTPA points when the motor speed was 1000 r/min and the reference 

torque varied from 10 N·m to 45 N·m in steps of 5 N·m. figure 4 shows the real MTPA points obtained 

by curve-fitting of the constant current amplitude locus, the control trajectory based on the proposed 

control scheme and the control trajectory based on conventional mathematical model based MTPA 

control scheme without the compensation of the derivative terms. As can be seen from figure 4, due to 

the neglect of the derivatives of machine parameters with respect to current angle, the resultant control 

trajectory of the existing mathematical model based MTPA control contains large errors even if the 

parameters used are accurate. In contrast, due to the DNN models the nonlinearities between d- and q-

axis current and motor toque accurately, the control accuracy of the proposed control scheme was 

significantly increased. The relatively small error between the MTPA control trajectory of the proposed 

control scheme and the real MTPA trajectory was caused by the relatively small modelling error of DNN.    
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Figure 4. Torque versus current angle of different control trajectories when speed was 1000 r/min. 

 

The MTPA tracking performance of the proposed control scheme was also simulated. In order to 

illustrate the performance of the proposed control scheme during payload torque changes, the response 

of d-axis current to a step-change in torque command from 10 N·m to 20 N·m and to 40 N·m then back 

to 10 N·m at speed of 1000 r/min is shown in figure 5. The resultant torque and the MTPA d-axis 

currents are also shown in figure 5. It can be seen that with the proposed control scheme the d-axis 

current tracks the MTPA d-axis currents automatically and the resultant d-axis current is very close to 

the MTPA d-axis current.  

 
Figure 5. The MTPA tracking performance of the proposed control scheme at 1000 r/min. 
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