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Abstract. A system identification of two-wheeled robot (TWR) moving on planar space is
presented by applying using neural networks. The system identification is to model the TWR
dynamics which is a nonlinear system. The model is applied for estimating the TWR posture
during the movements. Neural networks applied in the system identification is multi later
perceptron. The neural networks consists of three layers with eight neurons at the first layer,
five neurons at the second layer, and three neurons at the third layers. The neural networks
is trained to model the TWR dynamics based on a set of input and output data. The system
identification is demonstrated through computer simulations. The results show that the system
identification using neural networks is able to model the TWR dynamics. The neural networks
with learning rate 0.005 is able to estimate the TWR posture with convergence time 0.5 seconds.

1. Introduction
A two-wheeled robot (TWR) is a ground mobile robot that only uses two wheels to support the
robot body. Each wheels is independently driven by a high-torque electric motor. The robot
has an advantage of higher maneuverability due to the two-wheeled support. However, the two
wheels support gives a stability problem to the robot. The robot is unstable in longitudinal
mode where the pitching is statically unstable. An active stabilization system is introduced to
stabilize the robot. The active stabilization system is actively stabilizing the TWR pitching
movement using a state feedback control. Several works on developing the active stabilization
of TWR have been presented by applying different control methods [1–4].

The active stabilization system makes the TWR stable and be readily applied in many
applications. The high maneuverability makes the TWR to be a potential vehicle in developing a
high-maneuver autonomous ground vehicle. An autonomous vehicle is a vehicle that has ability
to move autonomously from one location to another location. The vehicle needs be equipped
by a control system that acts as a vehicle driver. Such kind of the control system is known as a
trajectory tracking control system.

Several works on developing autonomous vehicle based on the TWR have been reported. The
first autonomous TWR was reported in [5]. The TWR was equipped by a controller that has
three functions: 1) balancing the vehicle body, 2) control the vehicle speed, and 3) steering the
vehicle to track a straight line trajectory. The controller is a multi input multi output (MIMO)
controller that was designed using the optimal control method. The experimental results showed
that the TWR was able to move autonomously on a desired straight line path. Another work
on developing autonomous two-wheeled vehicle was presented in [6]. Trajectory tracking control
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system developed in the work was designed using partial state states feedback linearization
control method. The trajectory tracking control system is the main part of autonomous vehicles.
Different control methods have been applied in designing the trajectory tracking system, for
examples: optimal control [7], adaptive control [8–10], and predictive control [11].

The presented works on autonomous TWR were mostly applying model-based control
methods in designing the trajectory tracking control systems. A mathematics model representing
the TWR dynamics moving on a planar space is required the trajectory tracking control system
design using model-based control methods. The mathematics model can be obtained through
a system modeling. The system modeling results in a mathematics model by deriving the
dynamics equations of a system based on the physical laws. Several works on system modeling
of the TWR dynamics moving on planar space have been carried out through a derivation of
the robot kinematics [7–12].

The system modeling is not the only method to obtain a mathematics model of a system
dynamics. The mathematics model can also be obtained through a system identification [13–17].
The system identification determines a mathematics model of system dynamics by finding a
function that approximates a relationship between input and output of the system dynamics. A
set data of input and output is required in the system identification. The system identification
can be done in time domain and frequency domain [17–19].

Artificial neural networks are nonlinear parallel signal processing inspired by the human
brain [20]. The artificial neural networks are commonly termed by neural networks in the
scientific publication as well as in this paper. The neural networks have capability to approximate
any piece-wise continuous functions and including linear function as well as nonlinear function.
The capability makes the neural networks to be applicable in system identification of linear and
nonlinear systems. Several works on applying neural networks in system identification have been
presented [21–25].

This paper presents a system identification using neural networks of two-wheeled robot
dynamics moving on planar space. Presentation of the paper is organized as follows. Section
I gives introduction, literature review of related works, and motivation of the work. Section II
presents a derivation of the robot dynamics. Section III gives an overview of neural networks.
Section IV presents a system identification using neural networks. Section V demonstrates the
TWR system identification using neural networks through simulation. Finally, conclusion is
presented in Section VI.

2. Two-Wheeled Robot Dynamics on Planar Space
A two-wheeled robot uses only two wheels to support the robot body. Both wheels are driven
by two-independent direct-current (DC) motors. Figure 1 shows a TWR on a planar space.
Position and orientation of the robot on the planar space is known as the robot posture and
defined as follows:

ξ =

 x
y
ψ

 , (1)

where ξ is the robot posture, x and y are the robot position with respect to a reference coordinate
system, and ψ is the orientation angle of of the robot with respect to the reference coordinate
system. Rotation of the DC motors drives the wheels such that the robot moves with linear
velocity u and angular velocity r. The angular velocity is due to the difference rotational speed
of the both motors. The moving robot makes the robot posture to be time varying. The robot
posture dynamics are described by the following equation:

ẋ = u cosψ
ẏ = u sinψ

ψ̇ = r.
(2)
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Figure 1. A two-wheeled robot on planar space and the velocities diagram.

The (2) is a mathematics model of TWR dynamics moving on planar space. The model is
expressed by a nonlinear time differential equation. The model can be transformed into a
difference equation based on the following relation:

ẋ =
dx

dt
=
x(k + 1) − x(k)

∆t
(3)

ẏ =
dy

dt
=
y(k + 1) − y(k)

∆t
(4)

ψ̇ =
dψ

dt
=
ψ(k + 1) − ψ(k)

∆t
(5)

where ∆t is the sampling time, k is the present sample, and k + 1 is the next sample. The
transformation will result in a nonlinear difference equation of the TWR dynamics model as
follows:

x(k + 1) = x(k) + u(k)∆t cosψ(k)
y(k + 1) = y(k) + u(k)∆t sinψ(k)
ψ(k + 1) = ψ(k) + r(k)∆t.

(6)

The difference equation (6) is very useful to simulate the TWR dynamics in computer.

3. Neural Networks
Neural networks have several types and one of them is a multi-layers perceptron (MLP). Figure 2
shows an architecture of MLP. The MLP consists of three layers. Output of the first layer is
given by the following equation:

y1 = ϕ1(w1z + b1), (7)

where y1 is the output vector of the first layer, ϕ1 is the activation function of neurons at the
first layer, w1 is the weight matrix of the first layer, z is the input vector of the first layer, and
b1 is the bias vector of the first layer. Output of the first layer becomes the input for the second
layer. The second layer output is computed using the following equation:

y2 = ϕ2(w2y1 + b2), (8)

where y2 is the output vector of the second layer, ϕ2 is the activation function of neurons at the
second layer, w2 is the weight matrix of the second layer, and b2 is the bias vector of the second
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Figure 2. An architecture of three layers neural networks.

layer. The second layer output becomes the third layer input. Computation in the third layer
results in output that is given by the following equation:

y3 = ϕ3(w3y2 + b3), (9)

where y3 is the third layer output vector, ϕ3 is the activation function of neurons at the third
layer, w3 is the weight matrix of the third layer, and b3 is the bias vector of the third layer. The
third layer output is the MLP output as shown in Figure 2.

A linear function and a hyperbolic tangent are commonly applied as the activation function
of multi layer perceptrons. The linear function is given by the following equation:

ϕ(v) = v, (10)

while the hyperbolic tangent is given by:

ϕ(v) =
ev − e−v

ev + e−v
. (11)

The linear function is commonly applied as the activation function of the last layer, while the
hyperbolic tangent is commonly used as the activation function of the other layers.

Suppose the neural networks output is different to the desired output such that the neural
networks produce error. The error is defined by the following equation:

e = d− y3 (12)

where e is the error of neural networks, d is the desired output, and y3 is the actual output
of neural networks. Neural networks have capability to improve their performance through a
learning process. The learning process to update the neural networks parameters such that the
error is minimized. The error minimization is done based on an optimization of an error cost
function. A quadratic function is commonly used as the error cost function as given as follows:

E =
1

2
eT e, (13)

where E is the error cost function, e is the neural networks error given in (12), and the superscript
(.)T is the transpose operator.
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During the learning process, parameters of the neural networks, i.e: weight and bias are
updated based on the following equation:

wnew = wcur + ∆w (14)

where wnew is the updated weight, wcur is the current weight, and ∆w is the correction weight.
Similarly, the bias is updated as follows:

bnew = bcur + ∆b (15)

where bnew is the updated bias, bcur is the current bias, ∆b is the correction bias. The correction
weight and the correction bias are proportional to the derivative of the error cost function with
respect to the weight and bias, respectively. Both correction weight and bias are given as follows:

∆w = η
∂E

∂w
(16)

∆b = η
∂E

∂b
(17)

where E is the error cost function, w is the weight of a layer , b is the bias of a layer, and η
is the learning rate. The learning rate is a constant representing the learning process speed of
neural networks.

4. System Identification Using Neural Networks
The TWR dynamics on the planar space is a nonlinear system. It was described by a nonlinear
difference equation in (6). The equation be generally expressed by:

ξ(k + 1) = Fd [ξ(k), µ(k)] (18)

where ξ is the TWR posture, Fd is a nonlinear function, and µ is an input vector. The input
vector is defined by:

µ(k) =

[
u(k)
r(k)

]
. (19)

where u is the linear velocity and r is the angular velocity.
Neural networks is applied in system identification of the TWR dynamics. Since the neural

networks have capability to approximate any functions, the TWR dynamics is modeled as
follows:

ξ̂(k + 1) = Fn[z(k)] +Bµ(k) (20)

where ξ̂ is the estimated posture, Fn is an nonlinear function, z(k) is the input of the function
Fn, and B is a three by two constant matrix. The matrix B is known by selecting an arbitrary
value. The nonlinear function Fn is an unknown function and it will be approximated by the
neural networks. The posture robot is assumed to be available through measurements and the
measurement noises are neglected. The current posture data, ξ(k), is used as the input of neural
networks to estimate the next posture, ξ(k + 1). Block diagram of the system identification is
shown in Figure 3.

The different between the actual posture and the estimated posture is known as the estimation
error. The estimation error at time k is defined as follows:

em(k) = ξ(k) − ξ̂(k) (21)

where em(k) is the estimation error at time k.
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Figure 3. Block diagram of modeling TWR dynamics using neural networks.

The estimation error is equal to the neural networks error based on the two following facts.
First, the (20) shows that the model has the same input as the actual system (18), i.e., µ(k).
Second, the matrix B in the model is a constant matrix. The neural networks is trained to
obtain Fn such that the estimation error is minimized. The training is done using the learning
algorithm given in (14)-(17), where the cost function is now given by:

E(k) =
1

2
eTm(k)em(k). (22)

5. Simulation
The system identification of TWR using neural networks is demonstrated through computer
simulations. A simulation program is built based on the simulation diagram in the Figure 3.
The nonlinear function Fn in the model is approximated by three layers neural networks. Each
layers consists of different number of neurons, where eight neurons at the first layer, five neurons
at the second layer, and three neurons in the third layer. Weight and bias of the neurons are
initialized by small random numbers. The neural networks has three inputs as follows:

z(k) = ξ(k) =

 x(k)
y(k)
ψ(k)

 . (23)

The inputs are the actual posture of TWR that is assumed to be available through measurement
and the noise measurements are neglected. The matrix B in (20) has size three by two and can
be chosen arbitrary. In this case, the matrix B is defined as follows:

B =

 1 0
1 0
0 1

 . (24)

The system identification is simulated to estimate posture of a TWR moving on planar
space. The TWR moves at a constant linear velocity 3 m/s and a constant angular velocity 1
rad/s. Two simulations are presented by varying the learning rate. The first simulation uses
the neural networks with η = 0.001, while the second simulation uses neural networks with



2nd 2019 ICERA

Journal of Physics: Conference Series 1577 (2020) 012034

IOP Publishing

doi:10.1088/1742-6596/1577/1/012034

7

0 2 4 6 8 10
−4

−2

0

2

4

time (s)

x
(m

)

 

 

0 2 4 6 8 10

0

2

4

6

time (s)

y
(m

/
s)

 

 

0 2 4 6 8 10
0

200

400

600

time (s)

ψ
(d
eg
re
e)

 

 

actual

est 1

est 2

actual

est 1

est 2

actual

est 1

est 2

Figure 4. Simulation results of system identification using neural networks for estimating a
two-wheeled robot posture.

learning rate η = 0.005. Both simulation results are shown in Figure 4. The estimated TWR
posture using the neural networks with learning rate 0.001 is shown by the legend ”est 1” in the
figure. The legend ”est 2” in the figure shows the estimated TWR posture using neural networks
with learning rate 0.005. The simulation results show that estimated posture using the neural
networks with learning rate 0.005 was able to converge to the actual posture in 0.5 seconds while
using the neural networks with learning rate 0.001 requires 3.7 seconds. The neural networks
with learning rate 0.005 results in less estimation error than the neural networks with learning
rate 0.001.

6. Conclusion
A system identification using neural networks has been applied to estimate the posture of moving
two-wheeled robot (TWR) on planar space. The neural networks were multi layers perceptron.
The applied neural networks in the system identification consisted of three layers with eight
neuron at the first layer, five neurons at the second layer, and three neuron at the third layer.
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Two simulations of the TWR system identification were carried out by varying learning rate of
the neural networks, 0.001 and 0.005. The simulation results shown that the neural networks
with both learning rate were able to estimate the TWR posture. The neural networks with
higher learning rate resulted in better estimation than the neural networks with lower learning
rate. The neural networks with learning rate 0.005 were able to estimate the TWR posture with
converging time 0.5 seconds which is quite fast in the online system identification. The fast
converging makes the estimation results be applicable in a control system.

7. Further Work
The system identification results will be applied in developing an adaptive trajectory tracking
control system of the two-wheeled robot.
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