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Abstract. Trapped-flux magnets comprising stacked superconducting tape constitute a 

promising development to increase the power density of electrical machines, whilst at the same 

time keeping the complexity required in their construction in manageable levels that allow their 

use in applications such as aircraft propulsion. 

However, the conditions in which superconducting stacks operate inside an electrical motor 

differ quite significantly from the materials characterization experiments commonly developed 

to model their behaviour. This work presents the results of studying the applicability of these 

devices as magnetic flux source in the rotor of synchronous machines considering the influence 

of whole magnetic circuit. Several aspects are assessed, such as flux harmonics, magnetization, 

losses and demagnetization. Analytical expressions, which provide limited accuracy but allow 

fast calculations, are used for this purpose. The results illustrate the different trade-offs that arise 

during the design of a synchronous electric motor using trapped-flux magnets. 

1.  Introduction 

Trapped-flux magnets may offer a reasonable solution for the introduction of superconducting 

technology in rotating electrical machines. Either grown from a seed in a bulk form [1] or built by pilling 

up layers of superconducting tape [2], they act as stand-alone elements, providing once magnetized a 

source of magnetic flux density for the operation of the device, similarly to permanent magnets, with no 

need of further equipment, such as current leads, that increases the complexity of the machine’s 

construction [3]. 

These suitable characteristics encouraged several recent works aimed at studying their applicability. 

In [4] bulks were proposed for a synchronous motor, though stacks of superconducting tape were 

preferred in [5] to build a linear motor. This approach is shared with [6] dedicated to aircraft propulsion 

applications, motivated by stack’s superior mechanical characteristics compared to bulks [2,7], roughly 

similar to the substrate on which the superconducting layer is grown in addition to their easy 
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manufacturability, with reproducible characteristics, and the fact that any point defect is smoothed out 

by the stack’s multilayered configuration. 

Nevertheless, the advantages of using trapped-flux magnets come at the expense of an increased 

operational complexity. First, before operation the currents that produce the flux must be induced. The 

most immediate solution not adding further electrical circuits in the machine, is to use the stator winding 

itself for this purpose. Tooth-coil designs constitute a straightforward configuration for the stator 

winding of a fully superconducting machine, since it can be built by means of racetrack coils, which are 

bended just in one direction [8]. This allows magnetizing each pole in succession, provided the shaft, 

also equipped with cooling devices and thermal insulation, can withstand the corresponding mechanical 

forces caused by the unevenly magnetized poles. Distributed windings, on the other hand, feature a more 

complicate coil arrangement [9], however they can be fed with such a current configuration that 

magnetic flux is circulated at the same time following the center of each pole, the direct or d-axis, in 

order to magnetize all trapped-flux magnets in just one step. Either field cooling or zero field cooling 

procedures are possible for both stator winding types, depending on, among other things, the heat-

removal system (if they are different for stator and rotor or common to both) and the materials used in 

the stator winding: normal conductors or superconductors. Normal conductors can be pulsed, whereas 

this procedure seems more difficult to be applied using a superconducting winding [10]. 

Once magnetized, the trapped flux must be kept undisturbed during the operation stage of the 

machine. Contrary to permanent magnets, the circulating currents in trapped-flux ones are macroscopic, 

and thus can be influenced by any variation of the magnetic flux density. Normal variations to the surface 

of the stack cause losses and heating [11], whereas tangential ones (cross-fields) alter the induced 

current’s circulation pattern in such a way that effectively demagnetize the superconductor [12]. 

Unfortunately, such variations are intrinsic to the air-gap of an electrical machine, even when stator 

teeth are removed, due to the discrete layout of the stator coils. 

Facing these complexities, the aim of this work is to provide an insight into the conditions in which 

trapped-flux magnets would operate inside an electrical machine. In this way the gap between laboratory 

testing and preliminary machine design can be bridged. Several aspects are treated: harmonic content of 

the magnetic flux density profile in surface mounted superconducting magnets in Section 2, flux leakage 

for interior mounted ones in Section 3, and the current linkage harmonics created by the stator, which 

cause demagnetization and losses, in Section 4. In all cases, despite their limited accuracy, analytical 

expressions are used, as it should be done during the first step of any design procedure. Finite element 

analysis is only utilized for validation purposes. Nevertheless, this limited approach well reproduces 

some characteristic behavior of trapped-flux magnets installed inside an electrical machine and allows 

to draw some conclusions in Section 5. 

2.  Harmonic content of the magnetic flux density waveform 

In a first approximation, the electromagnetic torque Te produced by a surface mounted permanent 

magnet synchronous machine can be written for sinusoidal quantities as: 

 

𝑇𝑒 = −
3

2

𝑝

𝜔

�̂�𝑠�̂�𝑝

𝑋𝑠
𝑠𝑖𝑛 𝛿 (1) 

 

where p is the number of pole pairs, 𝜔 is the rotational speed in radians, Xs is the synchronous reactance, 

�̂�𝑠 the peak supply voltage, �̂�𝑝 the peak back-electromotive force and 𝛿 the load angle. In turn the back-

emf �̂�𝑝 is directly proportional to the variation of the flux linkage created by the permanent magnets’ 

movement in the air-gap. This means that it depends on the rotation speed and the peak value of the 

magnetic flux density wave main component �̂�𝑝, obtained from the Fourier series as it first coefficient: 

 

�̂�𝑝 =
1

𝜋
 ∫ 𝐵𝑟(𝜑)

2𝜋

0

sin 𝜑 𝑑𝜑 . (2) 
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In equation (2) 𝐵𝑟(𝜑) is the profile of the magnetic flux density along the air-gap, usually a 

rectangular waveform for surface mounted permanent machines, and φ the electrical angle, which 

extends two pole pitches. The Fourier series coefficients bk for rectangular, triangular and trapezoidal 

(with π/4 rise period) odd waveforms with amplitude unity (figure 1) can be written as: 

 

𝑏𝑘_𝑟𝑐𝑡𝑛 =
2

𝜋
·

1 − (−1)𝑘

𝑘
 𝑏𝑘_𝑡𝑟𝑛𝑔 =

4

𝜋2
·

1 − (−1)𝑘

𝑘2
 𝑏𝑘_𝑡𝑟𝑝𝑧 =

4√2

𝜋2
·

1 − (−1)𝑘

𝑘2
 (3) 

 

It is clear from (1-3) that a square wave, such as the one shown in figure 1 a), having a Fourier 

coefficient of b1_rctn=4/π, theoretically maximizes the output torque in surface mounted permanent 

magnet motors. However, it must be said that in order to avoid cogging torque, consecutive permanent 

magnets are spaced along the rotor perimeter, yielding a rectangular magnetic flux density waveform 

with values of the Fourier coefficient slightly below 4/π. 

On the other hand, trapped-flux magnets, if fully saturated, feature a triangular profile, whereas when 

undersaturated –not fully magnetized– the shape is rather trapezoidal [13]. This leads to the fact that a 

direct comparison between permanent and trapped-flux magnets taking into account its peak remanent 

magnetization is not correct for their application as surface mounted magnets in electrical machines. In 

order to yield the same torque, a fully saturated trapped-flux magnet must have a peak remanent flux 

46% higher than permanent ones. That is, to surpass the actual state of the art value achieved by 

conventional means, 1.3 T, superconducting magnets will trap 1.9 T. This value is also the saturation 

level of silicon iron alloys employed in manufacturing the stator and rotor. 

For lower levels of saturation, the trapezoidal profile of the magnetic flux density yields values of 

the Fourier series’ bk coefficients depending on the slope of the rising and descending segments, but 

always higher than for the triangular shape. This slope is related to Jc, the critical current or maximum 

current density the superconductor is able to carry, according to the Bean’s model (see figure 2). Hence, 

in an electrical motor application, undersaturated high Jc trapped-flux magnets can yield higher values 

of torque compared to lower Jc fully saturated ones. This effect is illustrated in figure 1, b) and c) 

diagrams: a surface mounted trapped-flux magnet with double Jc will increase the torque 41% for the 

same peak level of magnetic flux density achieved during the magnetization process (1 T). 

 

 
This analysis can be easily extended to higher order harmonics: superconducting magnets, compared 

to conventional ones, naturally portray lower amplitude high order harmonics (their order is squared in 

the denominator of (3) with k = 3,5,7…), which would lower the interactions with the stator current 

linkage harmonics in this surface mounted configuration, smoothing the output torque. 

3.  Leakage flux at the edges of the magnet 

As said in the previous section, the profile of the magnetic flux density on the surface of trapped-

flux magnets exhibit either a trapezoidal or a triangular shape. This is caused by the fact that this flux is 

generated by macroscopic currents distributed inside the superconductor following, in a first 

approximation, the Bean model. During magnetization, currents are induced below the sides’ surface of 

 

       a)                                                        b)                                                   c) 

Figure 1. Profile of different waveforms and their main sinusoidal component. 
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the superconducting magnet and, as the critical current level is reached there, flux is allowed to penetrate 

further into the superconductor, propagating these currents towards its centre. Figure 2 shows in a) the 

current density inside and in b) the corresponding magnetic field distribution over an unsaturated 

trapped-flux magnet of width wstack = 2a. The limited magnetization process has left induced currents 

only at its sides, next to the surface of the material, penetrating up to depth x*. The resulting trapezoidal 

magnetic field shape in figure 2 b), obtained simply by applying Ampere’s law to the current density 

profile in figure 2 a), enhances a phenomenon shared with permanent magnets: leakage flux [14].  

 
In electrical machines the linkage flux is the one common to two electrical circuits, whereas the 

leakage flux is the one that seeks alternative routes avoiding such commonality and thus it is usually 

wasted. Permanent magnets usually lose by these means 8-10% of their remanence despite being its 

relative magnetic permeability equal to one [15] and having a rectangular shape of the magnetic field 

on its surface. In the case of superconducting ones, the situation is not so favourable. In stacks the 

superconducting layer may be deposited on a substrate showing ferromagnetic behaviour at the 

temperature of operation [16], which on one hand favours magnetization, but on the other may increase 

the internal leakage flux inside the stack up to the point it is detrimental to the total field produced on 

its upper surface, as proved in [17]. In addition, ferromagnetic material surrounding the trapped-flux 

magnet, considered necessary in some designs in order to provide shielding against the air-gap 

harmonics and avoid demagnetization, facilitate leakage paths by providing low reluctivity between the 

central part of the magnet, with higher magnetic field, and its edges [figure 2 b)] [18]. 

For instance, figure. 3 shows a trapped-flux magnet made of pilled-up American Superconductor 

(AMSC) tape, with a critical current of 391 A·cm-1-width at 77 K and self-field and an engineering 

current density of 4.49·108 A·m-2. The magnet, surrounded by air, has been loaded by field cooling 

magnetization up to full saturation. As figure 3 illustrates, the magnetic flux density reaches a maximum 

value of 3.5 T at the center of the stack. In addition, leakage flux is also clearly appreciated as reverse 

flux along both sides of the magnet. This is not useful flux since it cannot be linked –it cannot flow– to 

other elements of the machine and, for instance, generate torque. The phenomenon worsens if 

ferromagnetic material is present at the top and bottom of the stack, due to the aforementioned reluctance 

reduction between the center and the edges of the magnet. 

 

+

-

J(x)

0 2a
a

-Jc

Jc

x*

         

H(x)

0 2a
a

Hs

x*

 

               a)                                                                                        b) 

Figure 2. Profiles of the current density, left, a); and magnetic field, right, b) inside an unsaturated 

trapped-flux magnet of width 2a. 
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Thus, the aim of this section is to provide an analytical tool to obtain estimates about this leakage 

flux in a trapped-flux magnet installed inside an electrical machine, taking into account all the limitations 

this implies (air-gap between stator and rotor, limited magnetizing current and saturation of iron). For 

this purpose, a reluctance network, used to analyse simple magnetic circuits, is employed. It consists of 

modelling with lumped parameters the features present along the path of the magnetic flux circulation 

inside the machine and then applying the Hopkinson’s law to obtain the common flux Ф: 

 

ℱ = 𝛷 · ℛ . (4) 

 

In equation (4) ℱ accounts for the total magnetomotive force and ℛ for the total reluctance, 

depending on geometric factors and permeability of the material. 

The reluctance network is applied to a generic simplified geometry of a fully superconducting motor 

spanning two half poles or 36 deg [figure 4 b)]. This constitutes in the full cross-section of the machine 

the smallest unit into which it can be reduced, since during magnetization the flux is parallel to the 

centerline of the poles. The two trapped-flux magnets, having the same dimensions and composition as 

the one shown in figure 3, are installed inside the rotor iron, to protect them from the stator current 

linkage harmonics, moving in both directions along the air-gap. As in the novel rotor architecture 

developed for the ASuMED project’s motor [18], the sides of the stacks are not covered by 

ferromagnetic material. This is intended to avoid further flux leakage and can be done for tape stacks 

under certain conditions due to the good mechanical properties of the substrate that assures structural 

stability. In addition, above the rotor, the stator portrays a teethless construction to suppress the stator 

slot harmonics caused by the variations in reluctance the teeth cause. The stator winding is installed in 

the air-gap and supported by a nonmagnetic structure, and hence not shown in figure 4. Other geometric 

and electrical characteristics of the model are shown in Table 1. 

The reluctance network used to model the magnetization procedure is shown in figure 5 a). It reduces 

to lumped parameters calculated according to [19], each homogeneous area in the geometry of figure 4 

along the central path of the flux. Each voltage source Fcoil represent one of the two coils, fed with the 

same current, creating the magnetomotive force needed to induce the magnetic flux along the circuit. 

Two equal reluctances Rairgap model the air-gap at both sides of those coils. The two stacks are modelled 

similarly, as air-gaps with relative magnetic permeability equal to 1, by the parameter Rstack. The thinner 

stator yoke, shown in grey at the top of figure 4 saturates, and hence in the network [figure 5 a)] it is 

 

 

Figure 3. Circulation of magnetic flux density in and around a fully saturated stack (arrows). 

Leakage flux, returning along its sides, inside and outside the SC, is observed. 

Linked flux 

Leaked flux 

A·m-2 

T 
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reproduced as a variable reluctance whose value depends on the flux itself Rstator(Ф), yielding a non-

linear problem that, however, can be solved in a few iterations. The rotor iron is not modelled due to its 

width, which yields a magnetic flux density well below saturation and thus a negligible value for its 

reluctance. 

 

 

 
 

Table 1. Characteristics of the model. 

Stator external diameter 236 mm 

Stator internal diameter 214 mm 

Stator winding distance to centre 101.5 mm 

Stator coil cross section 2.8 x 7 mm 

Air-gap length 12 mm 

Stack length 5 mm 

Rotor yoke external diameter 190 mm 

Rotor yoke internal diameter 150 mm 

Machine length 175 mm 

Angle of the circular section 36 deg 

Coil turns 6 

Magnetizing current range 0.2 - 2.4 kA 

 

In the first part of the study, the network in figure 5 a) is used to obtain the magnetic flux density 

circulating through all the elements of the circuit during magnetization, that is, when current is fed into 

the stator coils, in a range between 0.2 and 2.4 kA. After these magnetizing levels are reduced to 0, the 

reluctance network is modified as shown in figure 5 b). The superconducting magnets will maintain the 

same level of flux that was present during the magnetization procedure (thus the flux is trapped), hence 

in principle their magnetomotive force Fstack is equal to each one of the coils, Fcoil, during magnetization. 

However, in order to fully model them, it must also take into account the leakage flux at both of their 

edges. This is done by adding a parallel branch [see the smaller loop in figure 5 b)], which aims at 

          

a)                                                                                b) 

Figure 4. a) Rotor lay-out developed for the ASuMED motor and b) simplified section of the 

electrical machine studied in this work showing the central path of magnetic flux circulation during 

magnetization (black arrows) and leakage flux after magnetization (white arrows). Stacks are 

depicted in blue. 

Stator 

Rotor 
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reproducing both triangular regions at the sides of the trapezoidal shape shown in figure 2 b). As a first 

approximation, the magnetomotive force here is considered half of the one in the full magnet, 

Fleak=Fstack/2, whereas the new reluctances, Rleak and Rstack´, are defined by the position of x* in figure 2, 

that is the saturation of the magnet. This value of x* is obtained according to the Bean model as: 

 

𝑥∗ =
𝑤𝑠𝑡𝑎𝑐𝑘

2
·

𝛷𝑖𝑛𝑑𝑢𝑐𝑒𝑑

𝛷𝑠𝑡𝑎𝑐𝑘_𝑚𝑎𝑥
 (5) 

 

hence the position of x* depends on the ratio between the flux crossing the superconducting magnet 

during field cooling magnetization Фinduced and the maximum trapped flux for those dimensions, 

Фstack_max, obtained by FE simulation (see figure 3). The shift of x* marking the critical current density 

penetration towards the centre is thus proportional to the saturation of the magnet and would reach the 

point a in figure 2 when it is fully saturated. 

 
The accuracy of the network in figure 5 a) applied to the geometry of figure 4 b) is assessed by 

comparing its calculated induced flux during field cooling magnetization with the results of the field 

equations solved by the finite element (FE) method. In the FE case, the flux is measured at the surface 

facing the stack of the central rotor yoke piece’s side. Figure 6 shows, that, although with similar shape, 

the error increases in the case of the reluctance network as the magnetizing current is raised, compared 

to FE. This stems from the fact the air-gap leakage flux is not modelled in the network and the 

performance of the reluctance network to reproduce the full distribution of magnetic flux in the saturated 

stator is limited. 

The leakage flux at the edges of the trapped-flux magnet is shown at the bottom of figure 6 for both 

cases. In the FE model this leakage flux has been obtained by calculating the absolute value of the 

normal flux minus the actual normal flux on the rotor’s iron yoke. This later is considered to be the 

linked or useful flux for torque production: 

𝛷𝑙𝑖𝑛𝑘𝑒𝑑 = 𝛷𝑖𝑛𝑑𝑢𝑐𝑒𝑑 − 𝛷𝑙𝑒𝑎𝑘𝑎𝑔𝑒 . (6) 

Conversely, the analytical model solution has been obtained from the reluctance network by applying 

Kirchhoff’s voltage law to each loop and solving the corresponding system of equations iteratively for 

different levels of stator saturation until convergence is obtained. The results show that the method 

proposed here consistently underestimates the leaked flux, especially taking into account the higher 

values of induced flux during magnetization that the reluctance network yields (the difference between 

Rstator

Rairgap

Rairgap

Rstack

Rstack

Fcoil 1

Fcoil 2

+

+

                 

Rstack´Rleak

FstackFleak

+ +

Rstator

Rairgap

Rairgap
 

            a)                                                                                                             b) 

Figure 5. a) Proposed reluctance network to study the magnetization of the trapped-flux magnet and 

b) modification to the model after magnetization (only one stack’s loop is depicted) 
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the upper curves). This is caused by the fact that again not all the leakage paths are depicted in figure 5 

b), especially the air region on top of the magnet, and that the superconducting region doesn’t fulfill the 

Bean’s model: increased leaked flux at the edges lowers Jc, pushing x* in figure 2 towards the center of 

the stack [18] and thus allowing more leakage. 

 

 
Nevertheless, the proposed approach suffices to qualitatively illustrate some characteristic behaviour 

of trapped-flux magnets arranged inside the rotor yoke of an electrical machine, that is, installed between 

ferromagnetic elements. Figure 7 shows the linked flux obtained using the proposed reluctance network 

for different total thicknesses (half millimetre of inert substrate + SC material thickness) of the stack 

and levels of magnetizing currents. As said, this linked flux, or useful flux, is equal to the induced flux 

during magnetization shown in figure 6 minus the leaked one. Each line represents one level of the 

magnetizing current fed to the coils, whose value is shown at the right-hand side of the diagram. The 

concave shape of the lines is determined by a trade-off: the higher magnetic reluctance of a thicker stack 

towards the right-hand side of the diagram limits magnetization for the same magnetizing current value, 

whereas the increased saturation of the stack to the left-hand side allows flux to leak at its sides, as x* in 

figure 2 moves towards the centre of the stack. Thus, for each magnetizing current, there is a stack width 

identified with a square, where the useful trapped flux is maximized. No advantage is obtained either by 

reducing the thickness of the stack, to favour magnetization or by increasing it, to reduce the saturation 

and thus the leaked flux. Furthermore, this width is far greater than the one necessary to fully saturate 

the magnet: a 4 mm thick stack can trap an average magnetic flux density of 1.9 T, whereas here it is 

only loaded up to 1.13 T. This phenomenon, originated by the triangular/trapezoidal shape of the 

magnetic flux density provided by these elements compared to the rectangular one yielded by permanent 

magnets, imposes a heavy penalty for interior mounted stacks compared to surface mounted ones, since 

roughly twice the SC material amount is needed for suitable operation in the former case compared to 

the later. 

Furthermore, the substitution of this extra SC material by inert –nonmagnetic– one yields little 

advantage, as it can be appreciated by the slopes at both sides of the maxima in figure 7. The remaining 

superconductor saturates faster than the reluctance provided, and the total leaked flux increases. 

 

Figure 6. Comparison of flux values obtained by the reluctance network and by finite element 

analysis. 
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4.  Losses and demagnetization 

Variations in the magnetic flux density above a trapped-flux magnet cause losses, if those oscillations 

are normal to its surface, and demagnetization if they are tangential. In the air-gap of an electrical 

machine, the reluctance variation produced by the stator teeth as they move relative to the rotor, and the 

arrangement of the stator winding in discrete coils constitute the sources of those harmonics. Although 

the first can be removed in a teethless machine, as it is done in the design of figure 4, the stator winding, 

or also known as current linkage harmonics, will always be present in the air-gap. The value of these 

components can be estimated for losses computation [14] and in order to compare their amplitudes to 

the ones used during demagnetization experiments in laboratory conditions using simple analytical 

formulae [12]. For instance, with the configuration data of an electrical machine, the magnetomotive 

force Θ̂𝑠𝜐 for the harmonic of order υ can be written as [15]: 

 

Θ̂𝑠𝜐 =
𝑚 · 𝑘𝑤𝜐 · 𝑁𝑠

𝜋 · 𝑝 · 𝜐
𝑖̂𝑠 (7) 

 

where m is the number of phases, kwυ the corresponding winding factor, Ns the number of series-

connected turns in the stator, p the number of pole pairs and 𝑖̂𝑠 the amplitude of the current fed into one 

phase, assumed sinusoidal. This creates on the surface of the rotor variations of magnetic flux density 

in the form: 

�̂�𝑠𝜐 = 𝜇0

Θ̂𝑠𝜐

𝛿𝑒𝑓
 (8) 

 

being μ0 the magnetic permeability of vacuum and δef the effective air-gap. For the machine of figure 4 

this effective air-gap must consider besides the actual air-gap length, the reluctance of the iron, 

especially important when this material is closer to saturation. When utilizing (7-8) one must take into 

account that due to symmetries of an m-phase machine: 

𝜐 = 1 ± 𝑐 · 2 · 𝑚,     𝑐 = 0,1,2 … (9) 

The application of (7-9) to the design presented in figure 4 a) is shown in figure 8, for a current of 

400 Arms. An effective air-gap equivalent to twice the geometric one has been considered, and hence the 

saturation of the stator iron is not accounted. The figure shows that this simply obtained values are close 

 

Figure 7. Comparison of linked flux values obtained by the reluctance network method for different 

stacks thickness and magnetizing current values 
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to the penetration field in a single stack’s tape, and hence, an important level of demagnetization should 

be expected for a machine having this kind of superconducting magnets mounted on the surface of the 

rotor [12]. Furthermore, it can also be seen on the chart the effect on these harmonics of reducing the 

air-gap in 1 mm, which would favour magnetization, but also increases the possibility of 

demagnetization. Another trade-off arises in this case. 

Furthermore, these stator winding induced components revolve around the rotor surface at 

frequencies: 

𝜔𝑟𝜐 = 𝜔𝑠 (1 − 𝜐) (10) 

where ωs is the synchronism speed. From (9) the first component υ = 1 clearly moves at the same speed 

as the rotor. The frequencies for the higher harmonics (υ = 5…,19) lay between 0.4 and 2 kHz, which 

should be taken into account when carrying out experiments on demagnetization. 

Finally, it is worth to mention that these stator harmonics will interact with the ones of the same order 

produced by the magnetic flux density profiles studied in Section 2, generating pulsating torques. 

 

 

5.  Conclusions 

Analytical calculations constitute the first step in any design procedure. This contribution presents 

some approaches utilized in the electrical engineering’s field, especially adapted here for the preliminary 

study of synchronous machine configurations having trapped-flux magnets as source of magnetic flux 

density. Although the accuracy of the procedures is limited when compared to finite element methods, 

they suffice to present some characteristic behaviour of superconducting magnets inside an electrical 

machine which may help to assess their applicability. In this line, the limitations of using interior 

mounted stacks have been portrayed, with the necessity of arranging, due to the leakage flux, twice the 

amount of the material needed for obtaining the same magnetic flux density when compared to surface 

mounted stacks. Furthermore, an approach to obtain an estimation on the variation of the magnetic flux 

density in the air-gap of a teethless electrical machine has been presented, along some remarks about 

the figures of merit necessary to compare trapped-flux magnets with conventional ones. 
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Figure 8. Effect in the stator induced harmonics of shortening 1 mm the airgap of the machine 

depicted in Fig. 4 b)  
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