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Abstract. The low-lying collective states in osmium isotopes are investigated microscopically
by means of the boson expansion theory with the self-consistent effective interactions. The
potential energy surfaces and the structures of boson wave functions are illustrated. Theoretical
level structures and electromagnetic properties are compared with the available experimental
data. The prolate-oblate shape transition predicted at around N = 116 is also discussed in
terms of the evolution of the theoretical potential as the neutron number changes.

1. Introduction
Neutron-rich nuclei with A ∼ 190 provide a characteristic testing ground for microscopic theories
of nuclear structures. There are quite a few indications that a prolate-oblate shape transition
takes place at around N = 116 in this region [1, 2, 3].

The boson expansion theory (BET) is a promising method for microscopic description of
anharmonicities in nuclear quadrupole collective motions, in terms of the fermion degrees of
freedom, if the coupling to non-collective states is faithfully included in the calculation [4, 5].
It allows us to take into account higher-order terms neglected in the RPA, and the adiabatic
condition for particle motions can be avoided.

In this paper, the low-lying collective states in osmium isotopes are investigated
microscopically by means of the BET with the self-consistent effective interactions [6, 7].
The Kishimoto-Tamura method of normal-ordered linked-cluster expansion of the modified
Marumori boson mapping [4] is applied to construct the microscopic boson image of the fermion
Hamiltonian and that of the E2 operator. The potential energy surfaces and the structures
of boson wave functions [8, 9] for some relevant low-lying collective states are illustrated.
Theoretical level structures and electromagnetic properties are compared with the available
experimental data.

2. Theoretical framework
The theoretical framework is discussed in detail in Refs. [10, 11]; here it is described only briefly.

2.1. Fermion description
The model Hamiltonian with which we start is given in fermion operators as

H = hs.p. + (H0−pair − λN̂) +H2−pair + V (2) + V (3) + V (4), (1)
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with

H0−pair = −G0

4
P̂ †
0 P̂0, H2−pair = −G2

2
(P̂ †

2 · P̂2), (2)

V (2) = −χ
(2)

2
(Q̂2 · Q̂2), (3)

V (3) = −χ
(3)

3!
[
√
56π/5(Q̂2Q̂2Q̂2)− 3R̂0(Q̂2 · Q̂2)], (4)

V (4) = −χ
(4)

4!
[
48π

5
(Q̂2 · Q̂2)

2 − 8
√
56π/5R̂0(Q̂2Q̂2Q̂2) + 12R̂2

0(Q̂2 · Q̂2)]. (5)

Here hsp is the spherical limit of the Nilsson Hamiltonian [12], and our fermion model space
is spanned by 3s1/2, 2d3/2, 2d5/2, 1g7/2, 2f7/2, 1h9/2, 1h11/2 and 1i13/2 orbits for protons and
3p1/2, 3p3/2, 2f5/2,2f7/2, 1h9/2, 2g9/2, 1i11/2,1i13/2 and 1j15/2 orbits for neutrons. The residual
interactions comprised in the fermion Hamiltonian are the monopole- and quadrupole-pairing
interactions, H0−pair and H2−pair, the quadrupole-quadrupole (QQ) interaction, V (2), and the

effective three- and four-body interactions, V (3) and V (4). The effective many-body interactions
have been introduced as the higher-order terms of the QQ interaction to recover the saturation
and the self-consistency between the density and the potential in higher-order accuracy (nuclear
self-consistency) [13, 14, 15, 16, 17, 18, 6].

Strengths of the monopole-pairing interactions, G0(p) for protons and G0(n) for neutrons, are
determined to fit the experimental gap energies through the BCS gap equation. The strengths

of the quadrupole-pairing interactions are parameterized as g′2(p) = G2(p)/G
self
2 (p), g′2(n) =

G2(n)/G
self
2 (n), where Gself

2 (p) for protons and Gself
2 (n) for neutrons are the self-consistent

strengths of the quadrupole-pairing interaction to recover the local Galilean invariance in the
RPA order, respectively [19]. The strengths of the QQ-interaction and its higher-order terms,

χ(2), χ(3) and χ(4), are parametrized as f2 = χ(2)/χself
2 , f3 = χ(3)/χself

3 , f4 = χ(4)/χself
4 , where

χself
2 , χself

3 and χself
4 are the self-consistent values of χ(2), χ(3) and χ(4), respectively, which are

derived in Ref. [6]. In the present analyses, to reduce the number of free parameters, these
parameters are set to f2 = f3 = f4 = f and g′2(p) = g′2(n) = g′, and in calculating the energy
spectra the two dimensionless parameters, f and g′, are varied slightly around the vicinity of
the predicted value, i.e., unity.

2.2. Boson description
In the modified Marumori boson mapping [4, 20], orthonormal n boson states, which span the
ideal boson space, are introduced as

|n : a) ≡ N(n : a)−1A†
a1A

†
a2 · · ·A

†
an |0), (6)

where A†’s are the ideal boson operators and N(n : a) is the boson normalization factor with
the abbreviated notation (n : a) ≡ (a1, a2, · · · , an) with a1 ≤ a2 ≤ · · · ≤ an. Corresponding n
TD fermion-pair states

|n : a >>≡ N(n : a)−1B†
a1B

†
a2 · · ·B

†
an |0 > (7)

are not generally orthonormal and linearly independent. Here B†’s are the TD fermion-pair
operators. The fermion norm matrix is denoted as << n : a|m : b >>≡ δnm(Z2

n)a;b.
In order to construct orthonormalized fermion sates, we have to assume that the inverse of

Zn, i.e., Z
−1
n , exists. One of the possible ways would be to divide the fermion space {|n : a >>}



XXIII International School on Nuclear Physics, Neutron Physics and Applications

Journal of Physics: Conference Series 1555 (2020) 012023

IOP Publishing

doi:10.1088/1742-6596/1555/1/012023

3

into two parts, TF and (1− TF ), i.e., the TF space including the components that are retained,
and (1− TF ) excluding those. Then the ortho-normalized fermion states can be obtained as

|n : t >≡
∑
t′

(Z−1
n )t;t′ |n : t′ >>; (8)

here and in the following t, t′, etc., indicate the components that belong to the TF space while
t̄, t̄′, etc., indicate those that belong to the (1 − TF ) space. To derive a physically meaningful
boson mapping, the ideal boson space {|n : a)} is also divided into two parts, T and (1 − T ),
i.e., the truncated space T for boson states is introduced as a replica of the TF space for the
fermion states.

The one-to-one correspondence between the fermion state |n : t > and the boson state |n : t)
in the truncated space is obtained by using a mapping operator

U =
∑
(n:t)

|n : t) < n : t| (9)

as
|n : t) = U |n : t >, |n : t >= U †|n : t). (10)

At the same time, a boson image (OF )B of a fermion operator OF is defined by

(OF )B ≡ UOFU
† (11)

so as to satisfy
< m : t|OF |n : t′ >= (m : t|(OF )B|n : t′) (12)

in the truncated subspace. The operator U transcribes the dynamics of a fermion system into
that of a boson system.

The normal-ordered linked-cluster expansion of (OF )B is obtained by expressing |0)(0| and
(Zn)t;t′ in an expansion form. For example, the boson image of the basic TD fermion-pair
operator can be expanded as

(B†
t1)B = A†

t1 −
1

4

∑
t2t3t4

Y (t1t2t3t4)A
†
t2A

†
t3At4 +O(ϵ2), (13)

where Y (abcd) = 2(Y2)ad;bc with the matrix Yn defined by Zn = [1n − Yn]
1/2. The ϵ denotes

the expansion parameter such as |Y2|, and is usually very small if we truncate the system to the
collective TD component [4, 20].

In the present numerical calculations, all the TD elements with spin I ≤ 4 are regarded
as the chosen TD modes, and among them the lowest quadrupole mode is identified as the
collective TD mode. Then, by use of the BET, the original fermion Hamiltonian is mapped to
the corresponding boson Hamiltonian and is expanded up to fourth-order with respect to the
collective boson. Effects of the non-collective branches are included by use of the Feschbach
formalism [21] with the closure approximation for the intermediate states in the coupling
Hamiltonian [22]. For the collective branch, to include the RPA-type correlations at the early
stage of the calculation [22], a transformation form the A bosons to the so-called α bosons is
introduced as A† = ψα† + ϕα̃, Ã = ϕα† + ψα̃ with ψ2 − ϕ2 = 1. Since the present formalism
is based on the quasi-particle representation, the approximate number projection method [20]
is carried out to remove the spurious proton- and neutron-pairing rotational modes.

The resultant collective Hamiltonian is diagonalized in the collective subspace of the boson
Hilbert space to obtain energy spectra as well as boson wave functions for low-lying collective
states. The basis vectors of the collective subspace are expressed as |NvηIM), where N is
the boson number, v is the seniority number, I is the spin with its projection M , and η is an
additional quantum number necessary for a complete labeling of the basis vectors.
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3. Results and discussion
Figure 1 shows two-quasiparticle probabilities in the adiabatic collective TD mode [20] calculated
for 190,192,194Os. Since the collective TD mode is the primal building block of the collective
boson mode in the present formalism, the evolution of the basic TD mode as the neutron number
changes is closely related to the change in the structure of the collective boson, which is essential
for the boson description of nuclear structures.

Figure 1. (Color online) Two-quasiparticle probabilities in the adiabatic collective Tamm-
Dancoff mode for 190,192,194Os are plotted against the two-quasiparticle energies. The scripts
π and ν are attached to distinguish the proton components (solid red lines) and the neutron
components (dotted blue lines).

In the present numerical calculations, states with N ≤ 18 are taken, which amount to a
diagonalization space of slightly less than 100-dimensional matrices for each spin I. Figure
2 presents the structures of the BET wave functions for 0+1 and 2+1 states in 192Os. In this
figure one can see to what degree the BET wave functions converge in terms of v and N in the
numerical calculations. In the boson wave functions of 192Os, the leading order component of
the ground state is |N, v) = |0, 0) followed by |4, 0), |2, 0) and so forth, while that of the 2+1 state
is |N, v) = |1, 1) followed by |2, 2), |5, 1) and so forth.
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Figure 2. Probability distributions of the boson numbers N and the seniorities v in the
theoretical wave functions for 0+1 and 2+1 states in 192Os. Components of the same seniority
are separately accumulated and connected in the ascending order of N . The numbers attached
at some beginning or ending points represent the boson numbers.

Figure 3(a) illustrates the theoretical potential-energy surface as a function of quadrupole
deformation β for 192Os. This potential surface has two axial minima, one on the prolate side
and the other on the oblate side with almost the same depth. This feature of the potential implies
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strong softness or instability for the γ deformation. The corresponding theoretical energy levels
are presented in Fig.3(b) and compared with experimental levels of Fig.3(c). The energies of
the ground-state band and those of the quasi-γ band are qualitatively reproduced, though the
staggering of quasi-γ band is too prominent in the theoretical spectrum.
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Figure 3. (a) Theoretical potential energy surface for 192Os. The horizontal dotted line
indicates the ground-state energy. (b) Theoretical energy levels for 192Os. The states in
the ground-band, the quasi γ-band or the 0+2 band are separately accumulated, while other
states (short bars) are assembled in their spin groups in columnar forms. (c) The experimental
spectrum for 192Os [23].

In Tables 1 and 2, the theoretical B(E2) values and static quadrupole moments of some
low-lying states in 192Os for the case of epol(E2) = 0.5e are listed with experimental data,
respectively. These theoretical values reproduce the experimental values almost reasonably
except that the difference in the sign of Q(2+2 ) is a remaining issue.

Table 1. Electromagnetic properties of 192Os. The values given are B(E2) in (e · b)2. An
asterisk is attached to a B(E2) value of the present work (BET) if the sign of the corresponding
matrix element is negative.

transition Ii If BET Exp. [23]

g → g 2 0 0.415∗ 0.409+0.004
−0.004

4 2 0.610 0.497+0.013
−0.013

6 4 0.711 0.658+0.035
−0.021

8 6 0.779 0.757+0.038
−0.038

γ → γ 3 2 0.448∗
4 2 0.420 0.298+0.009

−0.012

4 3 0.120∗
γ → g 2 0 0.068 0.037+0.001

−0.001

2 2 0.482∗ 0.303+0.017
−0.008

2 4 0.0001 0.024+0.028
−0.005



XXIII International School on Nuclear Physics, Neutron Physics and Applications

Journal of Physics: Conference Series 1555 (2020) 012023

IOP Publishing

doi:10.1088/1742-6596/1555/1/012023

6

Table 2. Quadrupole moments for 192Os

Q (eb) 1981Ho [24] 1983Ch [25] 1988Li [26] BET

2+1 −0.96(3) −0.80(18) −0.86(20) −0.7678
2+2 −0.8(3) 0.7963
4+1 −1.019

For 190Os, the potential surface, theoretical energy levels and the experimental spectrum are
shown in Figs.4(a), 4(b) and 4(c), respectively, while for 194Os, those are presented in Figs.5(a),
5(b) and 5(c), respectively. Compared with 192Os, the potential of 190Os is slightly prolate
favored, while that of 194Os tends to be oblate favored. From Figs.3(a), 4(a) and 5(a), it is
inferred that the prolate-oblate shape transition occurs at around N = 116 for osmium isotopes,
which is compatible with the prediction of Refs. [1, 2].
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Figure 4. Same as Fig. 3 but for 190Os. Experimental data are taken from Ref.[27].
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Figure 5. Same as Fig. 3 but for 194Os. Experimental data are taken from Ref.[28].
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4. Summary and conclusions
The low-lying quadrupole collective states of even-even osmium isotopes in the A ∼ 190 region
are studied by means of the boson expansion theory with the self-consistent effective interactions.
Potential surfaces are illustrated and theoretical energy levels are compared with experimental
data. For 192Os, the structures of the BET wave functions are presented showing the degree
of convergence of the present calculations, and the theoretical electro-magnetic properties are
compared to available experiments resulting in reasonable agreements.

The theoretical potential of 192Os has two axial minima, one on the prolate side and the other
on the oblate side with almost the same depth, which suggests strong γ instability. The evolution
of the BET potential with changes in the number of neutrons suggests a prolate-oblate shape
transition at around N = 116 for osmium isotopes, which is compatible with the prediction of
Refs. [1, 2].
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