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Abstract. Magnetars form a subclass of neutron stars characterized by magnetic fields of
order 1014 − 1015 G at their surface. According to numerical simulations, the magnetic fields in
their interior could potentially be even stronger. Such magnetic fields are so extreme that the
internal constitution of neutron stars may be altered. The effects of Landau-Rabi quantisation
of electron motion on the equation of state and on the equilibrium composition of the crust of a
neutron star are investigated for a wide range of magnetic field strengths. Both the outer and
inner parts of the crust are treated in a unified and consistent way within the nuclear-energy
density functional theory.

1. Introduction
Whereas most pulsars are endowed with magnetic fields of order 1012 G, some neutron stars
may be formed with extremely high magnetic fields of order 1014 − 1015 G, as first proposed
by Thompson and Duncan [1]. According to numerical simulations [2–6], the internal magnetic
fields can reach ∼ 1018 G. The existence of such highly magnetised neutron stars so-called
magnetars has been confirmed by various astrophysical observations (see, e.g., Ref. [7] for a
review).

We have recently shown that the equilibrium properties of the outer and inner crusts of
a neutron star could be altered if the magnetic field is strong enough due to Landau-Rabi
quantisation of electron motion [8–11]. In this paper, we present new results for intermediate
magnetic field strengths.

2. Equilibrium properties of magnetar crusts
2.1. Outer crust
We determine the equilibrium properties of the outer crust of a cold nonaccreted neutron star
by minimising the Gibbs free energy per nucleon at each pressure P , as detailed in Ref. [8]. In
this model, atoms are supposed to be fully ionised and arranged in a perfect body-centred cubic
lattice. We consider only pure layers composed of a single nuclear species with charge number
Z and mass number A. Electrons are highly degenerate and are only weakly perturbed by the
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ions. For the typical magnetic fields B associated with magnetars, electrons are relativistic since
B? ≡ B/Brel > 1, where

Brel =
m2

ec
3

eh̄
' 4.41× 1013 G (1)

(me is the electron mass, c the speed of light, e the elementary electric charge, and h̄ is the
Planck-Dirac constant). The electron motion perpendicular to the magnetic field is quantised
into Landau-Rabi orbitals, first calculated by Rabi [12].

Table 1. Composition of the outer crust of a cold nonaccreted magnetar. Results were obtained
for a magnetic field strength B? = 500. Z and A are the charge and mass number of the
equilibrium nucleus, n̄min (n̄max) is the minimum (maximum) mean baryon number density at
which that nucleus is present and P1→2 is the transition pressure between two adjacent layers.
Properties in the upper part of the table are fully determined by experimental atomic masses.

Z A n̄min [fm−3] n̄max [fm−3] P1→2 [MeV fm−3]

26 56 4.50×10−7 1.36×10−6 1.18×10−7

28 62 1.40×10−6 5.34×10−6 2.95×10−6

28 64 5.51×10−6 7.78×10−6 6.15×10−6

36 86 8.17×10−6 1.25×10−5 1.49×10−5

34 84 1.29×10−5 1.88×10−5 3.23×10−5

32 82 1.95×10−5 2.55×10−5 5.55×10−5

30 80 2.65×10−5 3.29×10−5 8.60×10−5

28 78 3.43×10−5 7.59×10−5 1.40×10−4

28 80 7.78×10−5 8.68×10−5 1.58×10−4

42 124 9.06×10−5 1.22×10−4 2.53×10−4

40 122 1.26×10−4 1.43×10−4 3.20×10−4

39 121 1.45×10−4 1.47×10−4 3.29×10−4

38 120 1.50×10−4 2.07×10−4 4.01×10−4

38 122 2.10×10−4 2.47×10−4 5.07×10−4

38 124 2.51×10−4 2.61×10−4 5.39×10−4

To determine the equilibrium composition of the outer crust, we have made use of the
experimental atomic mass data from the 2016 Atomic Mass Evaluation (AME) [13, 14],
supplemented by more recent measurements of copper isotopes [15]. For the isotopes for
which no experimental data is available, we used the theoretical mass table HFB-24 from the
BRUSLIB database [16]. These masses were obtained from self-consistent deformed Hartree-
Fock-Bogoliubov calculations with the nuclear energy-density functional BSk24 [17]. Results
are collected in tables 1, 2 and 3 for different magnetic field strengths. The outermost layers
are made of isotopes with experimentally measured masses. While the stratification of the
crust changes with the magnetic field strength, the composition of the deepest layers remains
remarkably stable (only the transition pressures and the densities of the different layers are
changed).

2.2. Inner crust
Minimising the Gibbs free energy per nucleon at fixed pressure as in the outer crust, is
numerically more involved in the inner crust since the pressure now depends on the density
of free neutrons in addition to that of electrons. Instead, we have performed the minimisation of
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Table 2. Same as Table 1 for B? = 1500.

Z A n̄min [fm−3] n̄max [fm−3] P1→2 [MeV fm−3]

26 56 1.72×10−6 3.86×10−6 2.64×10−7

28 62 4.00×10−6 1.69×10−5 9.71×10−6

28 64 1.75×10−5 1.84×10−5 1.08×10−5

38 88 1.88×10−5 2.44×10−5 1.89×10−5

36 86 2.51×10−5 4.02×10−5 5.07×10−5

34 84 4.16×10−5 5.95×10−5 1.06×10−4

32 82 6.17×10−5 7.96×10−5 1.79×10−4

30 80 8.28×10−5 1.01×10−4 2.70×10−4

46 128 1.06×10−4 1.26×10−4 3.83×10−4

44 126 1.30×10−4 1.37×10−4 4.27×10−4

42 124 1.41×10−4 1.62×10−4 5.66×10−4

40 122 1.68×10−4 1.80×10−4 6.51×10−4

39 121 1.83×10−4 1.84×10−4 6.62×10−4

38 120 1.87×10−4 1.97×10−4 7.33×10−4

38 122 2.00×10−4 2.13×10−4 8.28×10−4

38 124 2.16×10−4 2.20×10−4 8.55×10−4

Table 3. Same as Table 1 for B? = 2500.

Z A n̄min [fm−3] n̄max [fm−3] P1→2 [MeV fm−3]

26 56 3.21×10−6 6.21×10−6 3.56×10−7

28 62 6.46×10−6 2.68×10−5 1.41×10−5

38 88 2.83×10−5 4.33×10−5 3.54×10−5

36 86 4.46×10−5 7.00×10−5 9.14×10−5

34 84 7.23×10−5 1.02×10−4 1.87×10−4

32 82 1.06×10−4 1.29×10−4 2.80×10−4

50 132 1.34×10−4 1.65×10−4 4.30×10−4

46 128 1.74×10−4 2.16×10−4 6.66×10−4

44 126 2.22×10−4 2.34×10−4 7.41×10−4

42 124 2.41×10−4 2.76×10−4 9.76×10−4

40 122 2.85×10−4 3.03×10−4 1.11×10−3

40 124 3.08×10−4 3.13×10−4 1.15×10−3

38 120 3.19×10−4 3.32×10−4 1.24×10−3

38 122 3.37×10−4 3.58×10−4 1.40×10−3

38 124 3.64×10−4 3.70×10−4 1.45×10−3

the Helmholtz free energy at fixed average baryon number density n̄. This latter procedure was
shown to be numerically equivalent to the former, the density discontinuities being vanishing
small beyond the neutron-drip point [18]. We have obtained the equilibrium properties of the
inner crust using the computer code developed by the Brussels-Montreal collaboration [18–
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20] and modifying it to take into account the effects of Landau-Rabi quantisation of electron
motion. This code is based on the fourth-order extended Thomas-Fermi method with proton
shell corrections added perturbatively using the Strutinsky integral theorem. This approach
is a computationally very fast approximation to the fully self-consistent Hartree-Fock plus
Bardeen-Cooper-Schrieffer method. The Coulomb lattice is described using the Wigner-Seitz
approximation. We further assume that electrons are uniformly distributed. Nuclear clusters
are supposed to be spherical and their local densities are parametrized as

nq(r) = nB,q + nΛ,q

{
1 + exp

[(
Cq −Rc

r −Rc

)2

− 1

]
exp

(
r − Cq

aq

)}−1

(2)

where q = p, n denotes protons or neutrons respectively and nB,q, nΛ,q, Cq, aq, and Rc are
geometrical parameters of the Wigner-Seitz cell. We only take into account the magnetic-field
effects on the electron gas using the analytical approximations implemented in the routines
developed by Potekhin and Chabrier [21].

Table 4. Composition of the inner crust of a cold nonaccreted magnetar for different magnetic-
field strengths B?. Z and N are respectively the mean numbers of protons and neutrons in the
Wigner-Seitz cell, n̄ is the mean baryon number density of the considered layer.

n̄ [fm−3] B? = 500 B? = 1500 B? = 2500

Z N Z N Z N

5.474×10−4 40 195 40 211 41 147
9.864×10−4 40 283 41 262 41 271
1.777×10−3 41 426 40 374 40 460
3.203×10−3 40 555 40 548 41 572
5.772×10−3 40 704 40 669 40 624
1.040×10−2 40 824 40 855 40 832
1.874×10−2 40 934 40 965 40 904
3.378×10−2 40 1061 40 1068 40 1044
6.087×10−2 40 1185 40 1193 40 1189

Calculations were carried out using the same generalized Skyrme functional BSk24 [17] as in
the outer crust. The influence of the magnetic field on the composition is found to be quite small
for the range of magnetic-field strengths considered, as shown in table 4. As in the absence of
magnetic fields [22], we find that most layers are still made of clusters with Z = 40 and become
progressively more neutron rich with increasing density.

The results we obtained for the equation of state over the whole crust region are plotted in
figure 1. The effects of the magnetic field lessen with increasing density as electrons fill more
and more Landau-Rabi levels. At densities above n̄ ≈ 0.01 fm−3 the equation of state matches
with that obtained in the absence of magnetic fields. We find that the equation of state remains
almost unchanged in the inner crust region for magnetic field strengths below B? = 500. As
can be seen in figure 1, the neutron-drip density delimiting the boundary between the outer and
inner crusts does not vary monotonically with B? depending on the filling of Landau-Rabi levels
(for more details, see [9, 10]).

3. Conclusion
We have determined the equation of state and the composition of the outer and inner crusts of
magnetars for different magnetic-field strengths taking into account Landau-Rabi quantisation
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Figure 1. Pressure P in MeV fm−3 as a function of the mean baryon number density n̄ in
fm−3 in the outer (black lines) and inner (blue lines) crusts of cold nonaccreted magnetars for
different magnetic field strengths B?. The inset is a close-up view of the neutron-drip transition,
marked by the symbol ◦ .

of electron motion. Our calculations were carried out in a unified and consistent way within the
nuclear-energy density functional theory. The shallowest regions of the crust are found to be
the most affected by the magnetic field. At densities above ≈ 0.01 fm−3, the equation of state
and the composition appear to be almost unalterred by the magnetic field.
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