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Abstract. Autonomous vehicles are one of the most attractive applications for light detection
and ranging sensors, where they help with scene understanding. For this understanding, object
detection is crucial, and it must be done in a frame by frame basis. This detection on a single
frame is a challenging task due to the sparse and disordered nature of the information. This
paper presents an alternative spherical representation for this data aiming to improve object
detection. This proposal registers the light detection and ranging data in a 2-dimensions angle
map using most of the 3-dimensions points in three layers, adding reflectivity information, and
a logarithmic representation of distance. For evaluating this representation, we employed an
object detector based on the algorithm: you only look once version 3, and we used a public
reference dataset of 3-dimensional objects for training. This framework yielded a classification
accuracy of 85.9% and 74.5% of intersection over union factor when estimating seven classes
simultaneously. This approach presents an alternative for processing this data that helps to
benefit the most from the light detection and ranging information with high accuracy, helping
in the reduction of the associated risks of autonomous vehicles.

1. Introduction

Since the high definition (HD) light detection and ranging (LiDAR) became popular, a great
number of applications have been using it. Object detection in three dimensions (3D), is one
of these applications and it is getting a lot of attention in the areas of city model generation,
power lines monitoring [1] and autonomous driving [2]. Autonomous vehicles are receiving
special attention these days. Car crash is the first cause of death for people between 5 and 29
years [3]. To avoid the collisions, an autonomous vehicle should get an scene understanding
and the LiDAR sensor is one of the main devices in this task. The LiDAR information have
to be used in real-time, but a single frame of LiDAR data has limited information about the
environment. This drawback added to a variable point density and occlusions [2], makes the
object detection a challenging task in context of autonomous driving.

In general, object detection is a well known task using red, green, blue (RGB) images. In
the last 8 years, the deep learning techniques have demonstrated superiority over the classic
machine learning methods [4]. In the case of the object detection applications over 3D LiDAR
information, it does not offer the same performance as the detection using RGB images, however,
as a topic in development it still has a wide range and of improvement.
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Like object detectors in RGB images, The initial solutions proposed for 3D object detectors
with handcrafting features were surpassed by the deep learning methods rapidly. Even when
there are some deep learning methods like PointNet [5], that use directly LiDAR data. Most
of 3D object detection methods uses a transformation of the LiDAR data in order to sort
the information getting better results. A good example is VoxelNet [2]. This method uses
a 3D representation sorted by voxels and processed in a 3D convolutional architecture. This
representation choose some points into each voxel, and doing so, it discards a lot of information.

Another methods stands by using LiDAR data transformed on 2D representations. In the
SqueezeSeg method is presented an architecture for semantic segmentation. In this method
is used a representation with a spherical coordinates mapping, cartesian coordinates and the
reflectivity information to configure a 2D with five channel feature tensor [6].

To take advantage of the gained experience by deep learning methods on RGB images, some
methods have explored a transformation named bird eye view (BEV) which is used with 2D
object detectors pre-trained with original RGB images like does Beltran, et al. in [7]. BEV
projects all the points on a (x,y) grid and code the information of the points into each grid box
in 3 channel pixel, alike RGB pixels [7]. In this representation the small objects get represented
in few pixels. This prevents the objects to be detected as can be evidenced in [8].

In this paper we propose a spherical representation of LIDAR data presented in a RGB format
to take advantage of all the information in the LiDAR data and the gained experience by the
researchers on object detection when using RGB images. In this way, this alternative allows
a better understanding of the scene providing more accuracy on the detection of classes of
importance in the autonomous vehicles application as well as in any other application using
LiDAR data. We evaluate this proposal using You Look Only Once version 3 (YOLOv3)
architecture as object detector over a public reference data-set for 3D object detection.

The outline of the paper is as follows. Section 2 explain the spherical representation. The
detection method and dataset conditioning is described in section 3. The section 4 presents the
experiments and results. Finally, we conclude on section 5.

2. Spherical representation of light detection and ranging data

The high definition LiDAR has 64 semiconductor lasers in a vertical arrangement. These
rotate around the vertical axis of the device as described in Figure 1(a). Each laser takes
over 2000 measurements per rotation [9]. As shown in Figure 1(b), each laser measurement
can be associated with the angle between the sensor and the Z axis (¢). The device angle
around Z axis is associated with (#), and the distance measured by the LiDAR with (p), as it
was presented in [6]. These values establish the spherical coordinates for each measurement, as
shown as an example by the red dot in Figure 1(b).

A row is defined by approximately 2032 distance values (p) measured by each laser in a
complete rotation. The 64 vectors define a matrix with shape 64 x 2032 configuring a spherical
frame of LiIDAR data. Since the data given by the LiDAR is presented in a 3 axis cartesian
format, each point should be transformed using Equation (1), Equation (2), and Equation (3).
Where x,y and Z are the 3D cartesian coordinates.

p=ya?+y*+22 (1)
0 = arctan(y/x), (2)
¢ = arccos(z/p). (3)

The high definition LiDAR. also provides a reflectivity value for each measurement which
can be added as a second channel to the representation. To take advantage of the good results
obtained by deep learning object detection methods in RGB images, a third channel is proposed.
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It is composed using a logarithmic representation of the point distances as shown in Equation
(4). Where p is the distance measured for the specific point, and pyq, is the maximum distance
of the corresponding frame. This channel aims to a better discrimination on distant objects
where the distance gap is increased.

Plogarithm = log(pmax - P), (4)

All the 3 Channels were normalized to be stored as an 8 bit RGB image. The Figure 2 is a
resulting image of the 360 degrees spherical representation of a single frame of LIDAR data. In
Figure 2 can be identified the reflectivity in the red channel and the farthest points highlighted
by the green channel.

(a) (b)
Figure 1. Spherical representation of a single LIDAR data point. (a) LIDAR HD laser layout,
and (b) ¢, 0 and p in a spherical representation.

Figure 2. Image of the spherical representation of one LiDAR data frame.

This RGB presentation of the spherical representation have two cons. First the RGB image
uses the column which represents the angle § = 0 as the first column. This cut the front of the
vehicle scene in two. This situation divide a lot of labeled objects due all these objects are in
front of the vehicle scene. The second disadvantage of the Figure 2 is the ratio between rows
and cols. These were resolved by rotating the entire point cloud 180° arround the Z axis and
limiting the representation to the zone where the labeled objects are (between 70°and — 70°).
The Figure 3 is the result of the described modification.

Figure 3. Image of the spherical representation after the rotation and crop process.
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3. Training details

3.1. Network Details

You only look once (YOLO) is one of the most popular deep learning object detection algorithms.
The method is composed by a convolutional neural network (CNN) which simultaneously
determines the bounding boxes and the classes of the detected objects. The main contribution
of YOLO is the region proposal network (RPN) which predicts the bounding boxes by simple
regression. This network computes some offsets to build the detected object bounding boxes
using box sizes predefined for the specific detection application. The RPN is included in the
same CNN architecture getting a very low latency [10].

There are a lot of variations of this architecture which can be useful in a wide range of
applications. In the last actualization of the method, YOLOv3 [11], some configurations can
make it faster or more precise. To asses the spherical representation, two configurations are
used: the Tini-YOLO configuration, which has 7 convolutional layers and the region proposal
layers; and a complete version of YOLOv3, which has 53 convolutional layers using some residual
layers and 3 different region proposal layers.

3.2. Dataset details

Our experimental setup is based on the 3D object detection benchmark data-set from the KITTI
data-set (a project of Karlsruhe Institute of Technology and Toyota Technological Institute) [12].
The spherical representation was used in 7481 LiDAR frames. This data-set has over 80.000
labeled objects, all of them in the front of the vehicle. The spherical representations are cropped
to fit the region where the labeled objects are.

The original object labels are presented as bounding boxes in cartesian format as presented
in Figure 4(a), where three blocks of information can be observed: position (z,y, z), dimensions
(height, width and length) and rotation (angle between m and —). A function was developed
to transform these blocks into center (¢,60) and dimensions (A¢, Af). The spherical center is
computed using the cartesian center, adding to the z magnitude of this point the half of the
object height and applying the Equation (2) and Equation (3) to the resulting point. A¢ is
computed with the cartesian center point, the same point adding height to the z magnitude
and computing the difference between the ¢ associated to both points. The A6 calculation
requires a different approach due to its dependence to the object position and rotation as shown
in Figure 4(b). The function to compute A# uses the 6 calculated on the spherical center and
the rotation value of the bounding box. With this value conditions the selection of two vertices
of the bounding box which determines the spherical width.

rotation

Figure 4. Bounding boxes representation.
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3.2.1. Data augmentation. We developed a data augmentation procedure to get a better
generalization and to take advantage of the Spherical representation. Due to this representation,
if some value is added to the 6 variable for each data point, a new scene is generated. If the
0 value is inverted (f = 360° — ), a new scene is also generated. Considering this, 10 new
scenes were generated from each frame, using five different angles to add and inverting each one
of them. At the end of this process, we obtained a data-set with 59000 training examples and
15000 testing examples.

4. Experiments

This augmented data-set with spherical representation, is first tested with the simpler
configuration of YOLOv3, the Tiny-YOLO configuration. Most of the objects in this data-
set are small objects (less than 10% of the image size), and Tiny-YOLO cannot detect small
objects. Because of this reason, in the first training session, after 200 ephocs the mean average
precision (mAP) reaches only 38% for classification score on detected objects and 24.4% for
intersection over union (IoU) [13] for bounding box prediction score.

The standard configuration of YOLOv3 and its three region proposal layers in different scales
gets better results on small objects than Tiny-YOLO. After 200 ephocs, the mAP obtained by
this architecture on the spherical dataset is 74.8%. The standard YOLOvV3 is capable of detecting
objects with sizes between 5 and 90% of the image size. Our dataset has objects under 5%. To
detect this small objects, we change the scale of the region proposal layers by doubling the
up-sampling. After this modification, the mAP reaches the 85.9% in 200 ephocs. Additional to
the mAP, the Recall reaches 86% and the Fl-score gets 89%. The predicted bounding boxes
gets an average intersection over union of 74.5%. The specific classes results are specified in the
Table 1 and a detection example is presented in Figure 5.

Table 1. Average precision for detection on test dataset.

Classes Car Van  Truck Pedestrian Cyclist Tram Miscellaneous

Average precision 89.7% 89.4% 90.3% 7% 86%  82.3% 86.6%

Figure 5. Detected objects after training process.

5. Conclusions

We present a spherical representation of LIDAR data which codes the entire point cloud into
an RGB image. This representation was tested for object detection over the KITTI 3D object
detection dataset using two different versions of the YOLO architecture. 85.9% in the mAP
shows the efficiency of this representation in comparison with the results of methods presented
in the 3D object detection benchmark of KITTI. Across all the seven classes we obtained the
lowest performance in the pedestrian class, which is the smallest object in the dataset. That is an
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expected result due to the small amount of information that represent a pedestrian. According
to these results, this representation could be a powerful tool for autonomous vehicle applications.
This representation could be used also, on every application with 3D information acquired by
any kind of LiDAR sensor. Researches could improve their 3D point clouds analysis using this
spherical representation on trained deep learning architectures for original RGB data analysis.

In future work, we will process the information within the bounding boxes to get more
specific information about the position and size of the detected objects. This information can be
useful for multiple object tracking methods, autonomous path planning and obstacle avoidance
methods in autonomous driving environments.
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