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Abstract. A technique has been developed for interpolating the experimentally obtained 

scattered data using radial basis functions, which can be used to study the constraints of 

kinematic, power, energy, economic and other parameters in construction, road and hoisting-

and-transport machines, as well as their working patterns. The technique consisting of two 

computational steps arranged as two separate algorithms allows the design and machine 

working process parameters to be optimised. The technique can be used for the range of 

machine parameters with an arbitrarily large dimensionality. For the first time, detailed block 

diagrams of algorithms are presented for interpolating scattered data using radial basis 

functions. At the first stage, the weighting factor determination is performed for the radial basis 

function method in each experimental point of scattered data. The second stage involves the 

actual interpolation or extrapolation of the function value at a given point with arbitrary 

coordinates. The developed methodology allows rigid interpolation of scattered data, such as 

the field experiment values of various working parameters for the construction, road, hoisting-

and-transport machines and their design parameters. The data space dimensionality for the 

experimental points is unlimited and can be arbitrarily large. 

Keywords: interpolation, radial basis functions, algorithm, scattered data 

1. Introduction 

The development of improved control methods for construction, road and hoisting-and-transport 

machines is an urgent research task [1]. The use of mathematical models in the field of control for 

construction, road and hoisting-and-transport machines may produce a significant technical and 

economic effect by optimising the loading of working equipment, parameters of the working process, 

the machine cycle, etc. [2]. 

The study of the constraints and properties of construction objects, as well as the kinematic, power [3], 

energy [4], economic and other parameters of machines and the patterns of their work processes, is 

impossible without the use of modern numerical methods of modelling and optimisation [5]. For 

example, these methods solve the problem of minimising the fuel and energy consumption, the 

optimal choice of equipment working characteristics, etc. [6]. 

An important role in solving the problem of modelling and optimising the working processes of 

machines, as well as the development of algorithms and control programs for construction, road and 

hoisting-and-transport machines, is played by the interpolation of the machine working parameters 

obtained as a result of field experiments [1]. 

When conducting field experimental studies on real physical objects [1], experimentally measured 

values are frequently presented as scattered data (i.e., unevenly distributed points) [7, 8]. This is due to 
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the difficulty or impossibility of setting strictly defined values for all controlled parameters of 

construction, road and hoisting-and-transport machines, particularly in the dynamic mode [1]. 

A problem arises connected with interpolating the scattered (chaotic, random) data at intermediate 

points or on a regular grid [9]. In order to solve this problem, the global polynomial interpolation [10] 

can be used. This method is based on a single arbitrary shaped polynomial [11]. Global polynomial 

interpolation is a non-rigid interpolation method, i.e. the polynomial surface, as a rule, does not pass 

through all given points [12]. In addition, difficulties arise in determining an optimal analytical 

expression of the polynomial. With a large number of experimental points, the size of the polynomial, 

which provides acceptable accuracy, increases. This may be considered as a disadvantage of the 

method. 

Another widely-used approach is based on the triangulation of given data points [13] with a 

subsequent verification that the interpolated point enters inside each of the obtained triangles [14] and 

finalisation by linear interpolation inside one of the triangles [15]. Delaunay triangulation is typically 

used in this case [16, 17]. 

Although linear interpolation along the planes of triangles is rigid, it demonstrates relatively low 

accuracy with respect to experimental data, which can be described by smooth nonlinear functions. 

This is particularly true for cases with a relatively small number of experimental points, i.e. when 

triangles are large. 

In order to overcome the above-listed disadvantages, more precise, rigid methods for interpolating 

scattered points [18] were developed including: the Kriging method [19, 20] and the radial basis 

function method (RBF) [21]. The latter is used for constructing explicitly defined surfaces [22] and 

solving other problems [23]. 

The RBF method is quite simple and straightforward. However, available publications provide no 

algorithms for the implementation of the RBF method in a space of arbitrarily large dimensionality. 

The description of such an algorithm is the aim of this paper.  

2. Formulation of the problem 

A set of nrt experimentally obtained scattered points is given in a space of dim dimensionality. The 

coordinates of the points are denoted as xi, where i=1,2,…dim. A single point with the j=1,2,…nrt 

number in this space has the [x1,j, x2,j, … , xi,j, …, xdim,j] coordinates. The function value at the j point is 

designated as Fj. 

In addition, a Point point with [x1,p, x2,p, … , xi,p, …, xdim,p] coordinates is given, the value of which 

must be interpolated. The value of the interpolated function, indicated as Fp, is to be determined at the 

Point point. 

3. Interpolation algorithm using the radial basis function method 

When solving the problem, the experimental points from the initial data set were presented in the form 

of a Matrixinput matrix with each row, except for the last element, presenting a coordinate vector of a 

separate experimental point. The last column of this matrix contains the values of the function at the 

corresponding experimental points: 
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The first step of the method, performed only once, involves the calculation of weighting factors (w) for 

each experimental point. To this end, in a space of the dim dimensionality, the r Cartesian distance 

between all the experimental points is determined in pairs using nested cycles. The full expression of 
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the Cartesian distance depends on the space dimensionality. The calculation of the r distance between 

two points with i and j indices is based on summing the squares of the differences for the individual 

coordinates of the points in space using the recurrence formula in the inner loop. 

r(i, j)=r(i, j)+(matrixinput(i, j1)–matrixinput(j, j1))
2
, 

where the i and j indices denote the numbers of two experimental points. The  1 1; imj d  index 

denotes the serial numbers of the individual space coordinates (the inner loop of the recurrence 

formula is performed according to j1). After completion of the recurrence formula inner loop, the 

square root is extracted: 

   , ,r i j r i j . 

Hereinafter, the presence of the same variables in the left and right parts of the formulas is determined 

by the syntax features in the algorithm software implementation in most common programming 

languages. The target (calculated) variable is sometimes used as one of the operands in the long right 

side of the expression. This provides for the total number of variables in the program to be reduced. In 

this case, the previous value of the target variable on the right side is taken. This is the value taken by 

the variable until the moment of the calculation described by the current formula. 

Using the values of r pairwise distances, a RBFkorn square matrix of the (nrt × nrt) size is compiled. 

Matrix elements are calculated by the formula of the polyharmonic spline most commonly used in the 

RBF method [24]: 

       
2

, , ln ,kornRBF i j r i j r i j  .    (1) 

The weighting factor of each experimental point is formed as a result of solving a system of linear 

algebraic equations (SLAE) with the RBFkorn coefficient matrix. The Right column of SLAЕ free terms 

(right parts) is the last right column of the Matrixinput source data matrix: 

Right= Matrixinput(1:nrt, dim). 

In a matrix form, the SLAE of the considered problem has the form: 

kornRBF w Right  , 

where RBFkorn is the SLAE matrix, w is the column of unknown weighting factors, Right is the column 

of free terms. 

As a result of solving SLAE by known methods [22, 23], a w column of weighting factors for 

experimental points of nrt size is formed. In this work, in order to solve SLAE, the linsolve function of 

the MATLAB system programming language was applied. 

The second stage of the methodology includes the actual interpolation of the Fp multidimensional 

function value at the Point point with the given [x1,p, x2,p, … , xi,p, …, xdim,p] coordinates. 

The function value at the Point interpolated point is calculated as the sum with the number of terms 

equal to the number of experimental points. Each term of this sum corresponds to a specific 

experimental point with the i index and represents the product of the w(i) weighting factor and the 

RBFtek(i) current RBF value for this experimental point relative to the interpolated Point point: 

 
1
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The RBFtek(i) current value of the experimental point RBF is determined by the dependence similar to 

the dependence (1): 

     
2

lntekRBF r i r i  ,    (3) 

with the only difference that the r distance in this case is the Cartesian distance from the Point 

interpolated point to the experimental point with the i index. The RBF value is calculated using the 

recurrence formula 

r(i)=r(i)+(matrixinput(i, j)– Point(j))
2
,        (4) 

where the j index denotes the serial numbers of the individual coordinates in the multidimensional 

space of dim dimensionality. 
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а      b 

Figure 1. Block diagrams of algorithms for (a) calculation of weighting factors for experimental 

points and (b) interpolation by the method of radial basis functions in a space of arbitrary 

dimensionality. 
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When the w weights are known, the RBF interpolation is quite simple and basically consists in the 

following sequence of steps: 

1. The nrt of distances (r) are determined from the current interpolated Point point to all points from 

the set of experimental points according to formula (4). 

2. For each point (i=1, 2, ..., nrt) from the set of experimental points, the RBFtek(i) RBF value is 

determined relative to the interpolated Point point according to the formula (3). 

3. The value of the required Fp function is calculated at the interpolated point by the formula (2). 

The detailed block diagrams of algorithms for determining weights and interpolation using the RBF 

method for a single point are shown in figure 1. 

4. Experimental results 

Let us consider the solution for the problem of interpolating scattered data by the RBF method using 

the interpolation example of the z force acting on the hydraulic cylinder rod for lifting the excavator 

boom with an empty bucket. In this case, the z force appears as a continuous function of two 

independent arguments: the rotation angles of the moving parts in the excavator working equipment - 

the x boom angle relative to the spindle and the y dipper angle relative to the boom: 

( ),z f x y . 

A set of n obtained experimentally scattered points is given with zj(xi, yi), i=1, 2, …,nrt coordinates 

(see figure 2). Due to the impossibility of setting absolutely exact values of the angles during the full-

scale experiment, the indicated angle coordinates at the experimental points take random values within 

the working ranges of the min max[ ; ]x x  boom and min max[ ; ]y y  deeper angles each: 

min maxix x x  ; min maxiy y y  . 

 

 

Figure 2. The experimentally measured z force on the hydraulic cylinder rod for lifting the excavator 

boom at different x boom and the y deeper angles (scattered data example): a - plot of the experimental 

point set in terms of two factors (top view); b - three-dimensional plot of the force function at the 

experimental points. 

 

As an example, the function values were interpolated in the zjk, (j=1, 2, …,m; k=1, 2, …,n) set of 

points with the given values (coordinates) of two angles (xj, yk). The angles in the (xj, yk) set of points 

for interpolation were given on a uniform grid in the range of xj=[–15°; –65°], yk=[40°; 180°], in 

increments of 2°. In the general case, these values do not exactly coincide with the coordinates of any 

of the (xi, yi), i=1,2,…, nrt scattered experimental points. 

                   -60 

-40 

-20 
60 80 100 120 140 160 

y, deg. 

x, 

deg 
         

   
   

   

50 

4 

10 
5 

100 -60 

6 

-40 150 -20 y, deg.  x, deg. 

z, N 

a b 



MSTU 2020

Journal of Physics: Conference Series 1546 (2020) 012086

IOP Publishing

doi:10.1088/1742-6596/1546/1/012086

6

 
Figure 3. The surface of the z force values on the hydraulic cylinder rod obtained by interpolation of 

experimental scattered points using the radial basis function method (example). 

 

The above argument ranges for interpolation include all experimental scattered points. The graphic 

results of interpolation by the RBF method are presented in figure3. 

An analysis of the results obtained as an example demonstrated that the interpolated surface passes 

exactly through all the experimental scattered points and provides both interpolation and extrapolation 

of data, while being simultaneously rigid and smoothed. 

5. Conclusions 

As a result of the research, a technique was developed for interpolating scattered data by the RBF 

method in the argument space of arbitrary dimensionality. For the first time, block diagrams for two 

algorithms included in this technique and presenting its two separate stages are provided. The first 

stage involves the determination of the weighting factors for each experimentally obtained point of 

scattered data. In this case, the procedure for solving SLAE is used. The second stage involves actual 

interpolation. For each experimentally obtained point, the RBF value is determined relative to the 

current interpolated point. Further, the function value is determined at the interpolated point as the 

sum of the products for the RBF values of the experimental points and the corresponding weighting 

factors. 

The developed methodology allows rigid interpolation of scattered data obtained as a result of field 

experiments, such as the values of various working parameters of construction, road and hoisting-and-

transport and other machines. Among other things, interpolation of hydraulic fluid pressures in 

hydraulic elements of machines, forces and moments created by drives of machines and their working 

equipment is possible. 

The developed technique can be used for interpolating scattered experimental data in a space of 

arbitrary dimensionality, which is quite typical of works describing complex working processes of 

construction, road, hoisting-and-transport and other technological machines. 

For the first time, detailed block diagrams of algorithms for interpolating scattered data in a space of 

arbitrarily large dimensionality are presented. The feasibility of the developed algorithms was 

confirmed by a computational experiment. 

The developed algorithms can be used by researchers involved in modelling and optimising the 

parameters of construction, road, hoisting and transport and other technological machines, as well as 

the parameters of their work processes and control systems. 
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