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Abstract. Over the decade, extensive applications of portable electronic devices have
progressed enormously. This has ultimately influenced the shortage of bandwidth supply.
Therefore, in satisfying the demands of consumers, low-cost antennas are required to be
designed specifically for the fifth-generation frequency spectrum (5G) devices. The main goal
of this paper is to report a high gain enhancement in a low profile and economical antenna
operated effectively using air substrate in 5G devices. This paper discusses the study effects of
thickness on the substrate and conductive material, also the novel design of a cost-effective,
air-substrate based microstrip antenna with enhanced gain at 28 GHz resonance for the 5G
mobile phone application. In the proposed design, a 2x2 array configuration of radiating
elements was designed to occupy a 35.7x31.5x0.5 mm3 volume. Copper (Cu) material was
used in the fabrication of the antenna prototype. The proposed antenna was evaluated and
compared to the simulation results to demonstrate the design's reliability. The proposed system
provided a peak gain and performance efficiency of 15.6 dB and 86.9.4%, respectively, when
operated at 28 GHz resonance.

1. Introduction

The emergence of 5G technology on user terminals requires the use of antennas with previously
unseen features of the spatial beamforming radiation pattern [1-2]. In order to achieve a reasonable
trade between the issues of technological design and commercial criterion such as broadband
performance, low profile, enhanced gain, low cost and all that possess numerous challenges.
Increasing the gain of patch antennas was the goal of many researchers in the last decade because it
offers better signal quality and longer range. All these attributes are possible to be achieved with
microstrip antennas when discrete patch elements are combined to form an array. Several methods in
improving the gain and bandwidth of antennas were reported in literature. Roh et al [3], suggested the
use of high gain antennas in both mobile and base stations to compensate for the higher path loss and
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wave frequencies However, there exists a problem of very low coverage of directional high gain
antennas. By implementing the beam scanning options, a phased array can solve this coverage
problem. These options include; (a) new 5G mm-wave antennas designed for mobile terminal
applications with a wide range of polarizations such as phase array circular polarization but with gain
of less than 13 dB. Antenna designs with promising coverage performance were obtained for the
mobile terminal but the gain made was minimal [4-9]; (b) investigation on different compact
millimeter-wave slot antenna array [10-12]; (c) Chen & Zhang [13] and Hong et al. [14] applied the
method of low-profile array configurations with 10-layer FR4 substrates with a gain of 12 dB
achieved; (d) new cylindrical Electromagnetic Bandgap (EBG) substrate method [15-19] which uses
dielectric materials inherent properties to enhance the antenna performance but this type of
configuration increases the size of the patch antenna. A 1x4 antenna array elements were designed to
achieve a high bandwidth but with low gain [20-21]. Besides, a wide beam antenna design with a
bandwidth of 3.9 GHz using substrate integrated wave (SIW) technology was implemented but a low
gain was achieved [22]. It is indeed a challenging task to design an antenna with combined qualities of
high bandwidth, high gain and wide beam width.

In this paper, a 2x2 configuration directional microstrip patch antenna with a high gain and good
matching capability operated at 28 GHz resonance was proposed after parametric analysis of the
effects of thicknesses of conductive material and substrate. The influence of these effects on the
thickness of conductive material and substrates is quantified on the antennas ' impedance bandwidth,
efficiency, and gain. This antenna was fabricated based on a single microstrip patch antenna arranged
in a 2x2 matrix mode occupying a 535.7 x 31.5 x 0.5 mm3 volume to facilitate the directive radiation
patterns. The proposed design combined the benefits of high gain, compactable and cost-effective
antenna manufacturing since air substrate was incorporated in the design to significantly reduce its
cost of production. The antennas were eventually designed and measured, and the results are
summarized in Table 3

2. Antenna Design and Analysis

2.1 A. Single Patch Antenna Design

Figure 1 shows the front view of the proposed single patch antenna. All parameters were calculated
manually by using the formulas as provided in the Antenna Theory (Third Edition) book by Balanis
[23].
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Figure 1. The front view of the proposed single patch element antenna.
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Table 1. Dimensions of the proposed antenna designed

Component Paramet | Value
er (mm)

Length of the patch (L) Ly 4.54
Width of the patch (W) W, 5.34
Length of the ground plane Lg 9.08
(Lo
Width of the ground plane W 10.68
(Wy)
Thickness of substrate (hs) hs 0.50
Conductor Thickness (ht) hy 1.00
Length of the inserted fed fi 1.45
(f)
Width of the feedline (W) Wi 2.45
The gap between the patch Gy 0.50
and the inserted -fed (Gy)
Feedline length (Ly) Ls 2.68

2.2. Two-Element Patch of Antenna Array Design

The single patch antenna was found to achieve the best condition at all the specifications based on the
parametric studies conducted. In this second design, the distance between the two patches in both E
and H planes were studied and the feed design of the antenna was optimized. The impedance of the
quarter-wave transformer and the resonance of the edge were calculated as shown below:

Zy = RinZ, )

Where Z1 is the characteristic impendence, Zo is the characteristic impendence (50 Q), Rin is the
resonance edge resistance and Ge is representing of edge conductance. Rin can be calculated using
Equation (2).

1 (2
R' J—
n =96,
w
G, = 0.00836 — (3)
Ao

The design parameters of the antenna feed from 50 to 100 feedline are summarized in Table 2.
After conducting a parametric study, all antennas were separated by 0.75 A, in the E-plane and 0.8 A,
in the H-plane, where A, = 10.7143 mm.

The design parameters of the antenna feed from 50 to 100 feedline are summarized in Table 2.
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After conducting a parametric study, all antennas were separated by 0.75 Ao in the E-plane and 0.8 Lo
in the H-plane, where Ao = 10.7143 mm.

Table 2. Design parameters of antenna feedline.

Design of feedline (£2) | Length of the feed (mm) | Width of the feed (mm)
50 2.71 2.05
70 2.68 1.47
100 2.71 0.81

35.7mm

S.1lmm

0.7540

4.5Smm

3.22mm

31.Smm

ih i Alr
Ground == 1
1
A Connector =
i

(b)

Figure 2. Schematic diagram of the proposed antenna design with required dimensions. (a) Top view,
(b) Side view

Figure 2 illustrate the proposed design geometry of the microstrip patch antenna planar array. Its
structure consisted of an element of the antenna, air substrate (e, = 1) and a vertical probe connected
to the patch with individual dimension of 5.1 mm x 4.5 mm. In application, a simple microsrip
transmission line could be used to fed the antenna. Power was fed into the designed antenna via
microstrip feed line having a dimension of 2.68 x 2.45 mm? and impendence of 50 Q.and 1 mm
thickness of the coductive materials are used. The proposed array element has been combined in an
array of four elements and placed on the edge of the ground plane of 35.5 mm width and 31.5 mm
length as shown in Figure 2. The spacing between elements at E plane and H plane has been chosen to
be 0.75 X, and 0.8 A, respectively in order to reduce the grating lobe magnitude.

3. Results and Discussions

The performance of the microstrip patch antenna planar array were optimized and analysed using the
2016 CST software [24]. Initially, the air substrate thickness was expected to be 0.50 mm. Parametric
simulation studies were conducted to determine the accurate resonator and ground thickness. Fifteen
different thickness were considered in this investigation, ranging from 0.1 to 1.5 mm at an interval of
0.1 (Figure 3). Microstrip patch antenna arrangement of 1.00 mm thickness displayed a resonant
frequency of 28 GHz with S;; value of -38.78 dB covering the frequency range of 27.799 GHz to
30.119 GHz. Similar measurement studies were conducted on physical microstrip patch antenna
planar array using Cu of 1.00 mm thickness. To validate the effects of air substrate thickness on the S-
parameter, seven distinct thickness ranging from 0.4 to 1.0 mm at an interval of 0.1 were considered
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(Figure 4). From the curves presented in Figure 4, it is evident that the 0.50 mm thick air substrate
yielded the optimum results. Effect of mutual coupling on the antenna parameters in the E and H
planes due to change in the inter-element spacing which was varied in steps of 0.05 A,, from the initial
value of 0.5}, to A, were also studied. An optimum design for the linear spacing was found to be 0.75
Lo in the E plane and 0.8 A, in the H plane. It was found that at this spacing, the antenna was working
closest to the designed operating frequency with a good return loss of -35.49 dB. Figure 5 shown the
photograph of the fabricated antenna prototype with the dimension of 35.5 mm width and 31.5 mm.
Measurement on the constructed systems was carried out using the N5245A PNA - X Microwave
Network Analyzer from Agilent and as can be seen in Figure 6, the results showed a good agreement
with the simulated results. The radiation patterns of the Cu based microstrip patch antenna planar
array was obtained from the Anechoic Chamber (Figure 7). At the specific resonant frequency, the
system showed a peak gain and performance efficiency of 15.6 dB and 86.9%, respectively as shown
in Table 3. Figure 8 on the other hand illustrates the current distribution of the finalized antenna
configuration.
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Figure 3. Return loss characteristics for different values of thickness of the conductive material at 28
GHz resonance.
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Figure 4. Variation of air substrate thickness with S11 parameters at 28 GHz resonance.
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Figure 5. Photograph of the fabricated antenna prototype.

Table 3. Comparison between simulated and measured result of proposed antennas

Efficienc
y (%0)

Gain (dB) Impedance Return loss (dB)

Proposed Bandwidth (GHz)
fabricate
d
antennas

at 28 GHz

Simulate
d

Measure
d

Simulate
d

Measure
d

Simulate
d

Measure
d

Single
patch

10.1

9.85

1.48

1.39

-24.69

-19.20

73.2

2-

13.50

12.86

3.40

2.99

-32.50

-25.13

82.4

Element
patch
array

4- 15.9
Element
patch
array

15.6 1.33 1.28 -36.58 -31.87 86.9

Radiation patterns were measured using a swept frequency measurement conducted in an anechoic
chamber. The measured radiating patterns of the proposed antenna were plotted at 28 GHz resonance
and are shown in Figure 7. Large cross polarization was observed which indicated a common
characteristic of this model of probe-fed MSA. The simulated peak antenna gain was about 15.9 dB,
while the measured gain of antenna was greater than 15.4 dB, mostly throughout the band. The actual
measured radiation patterns and gains of the proposed antenna were in close agreement with the
simulated results.
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Figure 6: Comparison of measured and simulated results (return losses) of a patch at 28 GHz
resonance fabricated on air substrate
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Figure 7: Comparison of measured and simulated results of radiation patterns (E & H planes) of a
patchat 28 GHz resonance fabricated on air substrate.
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Figure 8: Current distribution of the Cu based antenna
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4. Conclusion

A novel 4-element array of microstrip patch antenna with a high gain and good matching capability
operated at 28 GHz resonance was proposed in this paper. The proposed design was succeeding in
combining the benefits of high gain, compact size, and cost-effective antenna manufacturing. The
operating frequency of the antenna was adjusted by varying the thickness of the resonator, ground and
substrate. Radiating elements were designed to be located above air substrate to significantly reduce
its manufacturing cost. Furthermore, the designed antenna may occupy a small volume yet providing
higher gain, which can easily be fitted into current mobile devices as to comply with the upcoming 5G
communication standards. The fabricated antenna was laboratory tested which provided a good
agreement between the simulated and measured results of the antenna-resonant frequency relationship.
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