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Abstract. Despite its benefits, fish farming has a potential impact on the water environment, 

such as algae bloom, fish death, and eutrophication.  Integrated Multi-Trophic Aquaculture 

(IMTA) is designed to address environmental problems to reduce the excess of unfed pellets and 

fish feces under the cage. Mathematical modeling was built to describe a phenomenon in 

chemical, physical, and biological processes during the operation of IMTA to form a 

mathematical formula. The phenomenon was explained by the dynamic system, which is a 

method to describe, model, simulate and analyze dynamical systems. The model analyzed the 

interactions between nitrogen and phosphate concentrations and phytoplankton during the 

operation of IMTA. The model was a non-linear system of linear differential equations with three 

variables. Analysis of global stability is carried out at equilibrium points based on the Lyapunov 

stability theory using by Energy-Casimir method. Determine  equilibrium point and Casimir 

functions of the dynamical systems, then assume that the Casimir functions are linearly 

independent. Find the value of the G  matrix, then calculate the Lyapunov function with a 

positive definite value and test the validity of the Lyapunov function.  

1. Introduction 

Aquaculture activities are strongly influenced by water and sediment conditions can have an impact on 

the environment [1]. The aquaculture system produces a number of compounds such as suspended solids, 

total nitrogen, and total phosphorus [2]. The release of carbon (C), nitrogen (N), and phosphate (F) 

wastes are used to evaluate the environment for the influence of surrounding waters and the potential 

for IMTA cultivation [3]. Nitrogen and phosphorus are important factors in aquaculture systems, high 

concentrations of ammonia can be toxic to aquatic animals and can cause death. In addition, phosphorus 

also contributes to the eutrophication of water, which results from non-inedible feed residues, 

phytoplankton deaths, fish excretion and waste [4]. The IMTA system uses more than one species of 

biota that has a reciprocal relationship in the food chain. The application of IMTA allows farmers to 

obtain the same aquaculture products without increasing the area of cultivation. IMTA is different from 

traditional polyculture, where the cultivation is aimed at exclusive nutritional waste to supply fully or 

partially, nutritional inputs for other species. For example, fish farming will release soluble inorganic 

nutrients (eg ammonia, phosphate), resulting in suspended organic particles (feces and leftover feed) 

that settle on land [7][8]. 
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Sediment is an important component in the aquatic environment, the exchange of substances between 

soil and water and pond bottom conditions greatly affect water quality. The surface of the sediment is 

flattering a number of pollutants such as organic matter, nitrogen and phosphorus concentration which 

can threaten ecosystem integration. The exchange of water is used to maintain ammonia concentration 

in aquaculture ponds. Phosphorus in marine sediments is important in evaluating responses to 

environmental changes. Regeneration of phosphorus dissolved through a long process, most of the 

phosphorus is buried in sediments [5][6]. 

The application of mathematical models to the IMTA system is very important for controlling and 

understanding interactions between species, maximizing productivity by utilizing the environment [9]. 

Aquatic biogeochemistry is a complex subject because of interactions between water and sediment 

compounds. The biogeochemical process becomes a model of calculating the concentration of 

compounds such as nitrogen, phosphate concentration, and oxygen which might have a negative impact 

on the environment [10]. Therefore, this paper discusses the dynamic model of nitrogen and phosphate 

concentrations on the growth rate of phytoplankton and sediments. This model is used to predict nitrogen 

and phosphate concentrations in IMTA. 

2. Method 

Natural phenomena can be modeled into mathematical modeling in the form of mathematical equations. 

Mathematical equations require some simplifications to form models in the form of ordinary non-linear 

differential equations. The equation includes the rate of change or growth of biota or chemical reactions. 

Limiting environmental factors to simplify models such as the level of concentration of substances and 

the growth of marine biota. In this paper, the formation of a model is limited to the concentration of 

nitrogen and phosphate against phytoplankton and sediments. Furthermore, we discussed the stability 

analysis of dynamic system models [16] concentrations of nitrogen and phosphate toward phytoplankton 

and sediments. Global stability analysis of the IMTA dynamic model [14] using the Lyapunov function 

[15] with the Casimir energy method 
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Theorem 1. (Energy- Casimir Theorem)[13] The nonlinear dynamical system (1) where 𝑓: 𝔻 → ℝ𝑛 is 

Lipschitz continuous on 𝔻. Let 𝑥0 ∈ 𝔻 be an equilibrium point of (1) and let 𝐶𝑘: 𝔻 → ℝ𝑛, 𝑘 = 1, … , 𝑟, 
be Casimir functions of (1). Assume that the vectors 𝐶′𝑘(𝑥𝑒), 𝑘 = 1, … , 𝑟, are linearly independent, and 
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Furthermore, the equilibrium solution 𝑥(𝑡) ≡ 𝑥𝑒  of (1) is Lyapunov stable with Lyapunov function  
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Substituting  (6) and (7) into (5)  yields 
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Choosing 0  such that 0Q   

The existence of energy-Casimir functions for (1) can be used to construct the Lyapunov function 

for (1). We can construct a function 𝐻 ∶ 𝔻 → ℝ such that �̇�(𝑥) = 0 along the trajectories of the 

nonlinear dynamical system (1). If 𝐶1, … , 𝐶𝑟 are Casimir functions for (1), then 
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, for every function 𝐺: ℝ𝑛 → ℝ. Hence, even if 𝐻 is not positive definite 

at the equilibrium 𝑥𝑒 ∈ 𝔻, the function         1 , , rV x H x G C t C t   can be made positive definite at 

𝑥𝑒 ∈ 𝔻 by properly choosing 𝐺 so that 𝑉(𝑥) is a Lyapunov fuction for (1). 

In the Energy-Casimir method, steps are used to construct the Lyapunov function on the system (1) 

are as follows: There is a Lipschitz constant 𝑔(𝑡) that satisfy        1 2 1 2, ,f x t t f x t t g t x x   ,so 

the system applies to every  𝑡 ∈ ℝ. System (1) can be expressed in the form 
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Suppose there is a vector  𝑝 = (𝑝1, 𝑝2), 𝑛 = (𝑛1, 𝑛2)𝑎𝑛𝑑 𝑓 = (𝑓1, 𝑓2). will then be searched for who 

𝑔(𝑡) is a Lipschitz constant 

       1 2 1 2, ,f x t t f x t t g t x x    
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Lyapunov function at  equilibrium point.is 
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Lyapunov function (8) is definite positive because   0V x  , for all , ,p n f and   0V x   for all 

, ,p n f , so the dynamical system is globally asymptotically stable. 
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Lyapunov function at  equilibrium point.is 
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 (10) 

Lyapunov function (3) is definite positive because   0V x  , for all , ,p n f and   0V x   for all 

, ,p n f , so the dynamical system is globally asymptotically stable. 

4. Conclusion 

Over the last few decades, aquaculture has become the fastest-growing food product and is expected to 

meet global fish production demand. However, increased cultivation can cause impacts on the 

environment. The environmental impact is very influential on the results of aquaculture production. 

Integrated multi-trophic cultivation is one way to reduce the ecological effects of fish farming. The 

IMTA system is complex and depends on between the species being cultivated or between the organism 

and its physical and chemical environment. In IMTA cultivation, waste from food scraps and fish 

excretion are used as feed for another marine biota. In this paper, mathematical models are used to 

analyze interactions between nitrogen and phosphate concentrations and phytoplankton for aquaculture. 

This model is a system of linear non-linear differential equations with three variables. Analysis of global 

stability is carried out at the equilibrium point based on Lyapunov's stability theory 
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