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Abstract. Despite its benefits, fish farming has a potential impact on the water environment,
such as algae bloom, fish death, and eutrophication. Integrated Multi-Trophic Aquaculture
(IMTA) is designed to address environmental problems to reduce the excess of unfed pellets and
fish feces under the cage. Mathematical modeling was built to describe a phenomenon in
chemical, physical, and biological processes during the operation of IMTA to form a
mathematical formula. The phenomenon was explained by the dynamic system, which is a
method to describe, model, simulate and analyze dynamical systems. The model analyzed the
interactions between nitrogen and phosphate concentrations and phytoplankton during the
operation of IMTA. The model was a non-linear system of linear differential equations with three
variables. Analysis of global stability is carried out at equilibrium points based on the Lyapunov
stability theory using by Energy-Casimir method. Determine equilibrium point and Casimir
functions of the dynamical systems, then assume that the Casimir functions are linearly
independent. Find the value of the G matrix, then calculate the Lyapunov function with a
positive definite value and test the validity of the Lyapunov function.

1. Introduction

Aquaculture activities are strongly influenced by water and sediment conditions can have an impact on
the environment [1]. The aquaculture system produces a number of compounds such as suspended solids,
total nitrogen, and total phosphorus [2]. The release of carbon (C), nitrogen (N), and phosphate (F)
wastes are used to evaluate the environment for the influence of surrounding waters and the potential
for IMTA cultivation [3]. Nitrogen and phosphorus are important factors in aquaculture systems, high
concentrations of ammonia can be toxic to aquatic animals and can cause death. In addition, phosphorus
also contributes to the eutrophication of water, which results from non-inedible feed residues,
phytoplankton deaths, fish excretion and waste [4]. The IMTA system uses more than one species of
biota that has a reciprocal relationship in the food chain. The application of IMTA allows farmers to
obtain the same aquaculture products without increasing the area of cultivation. IMTA is different from
traditional polyculture, where the cultivation is aimed at exclusive nutritional waste to supply fully or
partially, nutritional inputs for other species. For example, fish farming will release soluble inorganic
nutrients (eg ammonia, phosphate), resulting in suspended organic particles (feces and leftover feed)
that settle on land [7][8].
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Sediment is an important component in the aquatic environment, the exchange of substances between
soil and water and pond bottom conditions greatly affect water quality. The surface of the sediment is
flattering a number of pollutants such as organic matter, nitrogen and phosphorus concentration which
can threaten ecosystem integration. The exchange of water is used to maintain ammonia concentration
in aquaculture ponds. Phosphorus in marine sediments is important in evaluating responses to
environmental changes. Regeneration of phosphorus dissolved through a long process, most of the
phosphorus is buried in sediments [5][6].

The application of mathematical models to the IMTA system is very important for controlling and
understanding interactions between species, maximizing productivity by utilizing the environment [9].
Aquatic biogeochemistry is a complex subject because of interactions between water and sediment
compounds. The biogeochemical process becomes a model of calculating the concentration of
compounds such as nitrogen, phosphate concentration, and oxygen which might have a negative impact
on the environment [10]. Therefore, this paper discusses the dynamic model of nitrogen and phosphate
concentrations on the growth rate of phytoplankton and sediments. This model is used to predict nitrogen
and phosphate concentrations in IMTA.

2.  Method

Natural phenomena can be modeled into mathematical modeling in the form of mathematical equations.
Mathematical equations require some simplifications to form models in the form of ordinary non-linear
differential equations. The equation includes the rate of change or growth of biota or chemical reactions.
Limiting environmental factors to simplify models such as the level of concentration of substances and
the growth of marine biota. In this paper, the formation of a model is limited to the concentration of
nitrogen and phosphate against phytoplankton and sediments. Furthermore, we discussed the stability
analysis of dynamic system models [16] concentrations of nitrogen and phosphate toward phytoplankton
and sediments. Global stability analysis of the IMTA dynamic model [14] using the Lyapunov function
[15] with the Casimir energy method

P=pP—(u+y)P,

. N 1)
N =gA—yN—uN—afP—_
-y PP UTF
: F
E-(1-q)A—yF —afP——.
(-a)A-rF-apP

Theorem 1. (Energy- Casimir Theorem)[13] The nonlinear dynamical system (1) where f: D — R" is
Lipschitz continuous on D. Let x, € D be an equilibrium point of (1) and let C: D - R k =1, ...,71,
be Casimir functions of (1). Assume that the vectors €' (x.), k = 1, ...,, are linearly independent, and
suppose there exists u = [uy, Uz, ..., r]T € R™ such that u; = 0,G'(x,) =0 and x7G"'(x,)x > 0,x €
M where M 2 {x e D: C'y(x,) =0,k =2,...,7}. Then, there exists a > 0 such that

r.(oC e
(e[ ()] (S|
Furthermore, the equilibrium solution x(t) = x, of (1) is Lyapunov stable with Lyapunov function

V() =6 (x)-6(x)+ 5 X [C, ()-C.(x)] ®

Proof. Note that
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Now, it need only be shown that V(X )=0and V(x)>0,xeD,x#X,. Clearly V(x,)=0.
Furthermore,

V (x)=G'(x)+aY[C, (x)-C, (x)]C', (¥)

k=2

and hence, V'(x) =0

next, note that

V(x)=G "(x)+a§{[c (0] S (x)+[C (x)-C(x)]e ()

And hence ) “
\‘/(x):e--(xe)mkg[agx'k (xe)) [%(xe)j (5)
G"(Xe)=ST{GG§2 f;js (6)
and )

;(agx'k(xeﬂ (aaik(xe)j:s{g Iﬂs @)

Substituting (6) and (7) into (5) yields
.. G G
V(x)=S"| ; ? 1S0S'QS
G, G,+aN
Choosing « > 0such that Q >0

The existence of energy-Casimir functions for (1) can be used to construct the Lyapunov function
for (1). We can construct a function H : D - R such that H(x) = 0 along the trajectories of the
nonlinear dynamical system (1). If (i, ..,C. are Casimir functions for (1), then

at the equilibrium x, € D, the function v (x)=H (x)+G(Cy(t).....C,(t))can be made positive definite at

X € I by properly choosing G so that V(x) is a Lyapunov fuction for (1).
In the Energy-Casimir method, steps are used to construct the Lyapunov function on the system (1)

are as follows: There is a Lipschitz constant g(t) that satisfy Hf (xl(t),t)— f (x2 (t)t)H < g(t)|x —x, S0

the system applies to every t € R. System (1) can be expressed in the form
dp
—=1f(p(t),t
i CIURY

dn

a:f(n(t),t)

df

a:f(f(t),t)
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Suppose there is a vector p = (py,p2),n = (nq,ny)and f = (f, f2). will then be searched for who
g(t) is a Lipschitz constant

With

Based on the system equation (1) can be formed as follows

e ay; =B —u—v)P—p2), suppose (B —u—vy)(p1 —pz) = 6;(t) we obtained
|a11| = 18: (0] < [6,(D)]
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Can we write follows as
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Next by selecting any p; and u, are the real number. For example y; =4 and u, = 4 and p,; and

X 2
X=|x, with x;, x,, x3 # 0. Because cl :(Tzﬁfn B ?oxﬂ(fn))2 1 O,OJ’the”C'(T1)=(0:0,0)’ so obtained
+ n+

X3
X
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X3
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Lyapunov function at equilibrium point.is

s o o4 )

Lyapunov function (8) is definite positive because V (x)> 0, forall p,n, f and V (x) <0 for all
p,n, f, so the dynamical system is globally asymptotically stable.

3.  Simulation Numeric

In this simulation numeric, a review of equations is presented for nitrogen and phosphate concentrations
and phytoplankton models as system dynamics. The equilibrium point on the data is

(P*, N", F*)=(0,30.3559,5.8529), analyze globally stability around the equilibrium point. Some data
parameter i.e A=398yv=0.05q=09,a=0.54,4=0.55 =085y =0.068

P oa1p
dt
Z—T ~351-0.11N ~0.25P _ N - 2 9)
2
“" Suppose ~ _05(n)° and o _05(f)
dF F C = n 2
G =039-0.06F ~0.25P n+f n+ f
*F We obtained

2 2
o L 0-5(“)2 _100/@d ¢, |0, £ 05(f )2 _10 | is linearly independent.
n+f (n+f) n+f (n+f)

2

C, = 0-n5£“f)2 _pand O.5(ff) _ . are Casimir's function for (9). Now, letting G(x) = 14C, (x)+ 1,C, (X)
n+

ie

G(p.n, )= G, + 1,C, :#{rg?f —n]+u2[o':£ff) _ fj it follows that G'(x,)=0 and

X'G"(x,)x>0,xeM

. OE OE OE
Seni-5 & F)

_ 2n (0 (f) (f)° f_05(f)
_[O M(nJrf_(n+f)z_lJ_O's{u{(n+f)2D _ML(n+f)2_1J+'u2[n+f_(n+f)2_J]
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G(T,)=[0 0 0]
S0, we obtained

0
[0}
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Next by selecting any p; and u, are the real number. For example y; =4 and u, = 4 and p, and
% 2
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Lyapunov function at equilibrium point.is

V(x)=6(x)-G6(x)+ £ 3(C, (x)-C, (x))

r

=G(p.n, f)-G(p".n", F)+%Z(Ck(p,n,f)—Ck(p*,n*, f*))2

k=2

e )t 1)
:4[<n>2 _n]+4[°-5<f>2_f]_4[E"*ﬁ_n*]+4[°-?<f*f_f*]ﬁ[[%(ff_f]_[‘)ﬁ(f*kz_f*ﬂz
n+ f n+ f n+f n+f 2| n+f n+f

Lyapunov function (3) is definite positive because V (x)> 0, forall p,n, f and V (x) <0 for all

p,n, f, so the dynamical system is globally asymptotically stable.

4. Conclusion

Over the last few decades, aquaculture has become the fastest-growing food product and is expected to
meet global fish production demand. However, increased cultivation can cause impacts on the
environment. The environmental impact is very influential on the results of aquaculture production.
Integrated multi-trophic cultivation is one way to reduce the ecological effects of fish farming. The
IMTA system is complex and depends on between the species being cultivated or between the organism
and its physical and chemical environment. In IMTA cultivation, waste from food scraps and fish
excretion are used as feed for another marine biota. In this paper, mathematical models are used to
analyze interactions between nitrogen and phosphate concentrations and phytoplankton for aquaculture.
This model is a system of linear non-linear differential equations with three variables. Analysis of global
stability is carried out at the equilibrium point based on Lyapunov's stability theory
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