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Abstract. Manipulating human facial images between two domains is an important and 

interesting problem in  computer vision. Most of the existing methods address this issue by 

applying two generators or one generator with ext ra condit ional inputs to generate face images 

with manipulated attribute. In  this paper, we proposed a novel self-perception method based on 

Generative Adversarial Networks (GANs) for automat ic face attribute inverse, where g iving a 

face image with an arbitrary facial attribute the model can generate a new face image with the 

reversed facial attribute. The proposed method takes face images as inputs and employs only 

one single generator without being conditioned on other inputs. Profiting from the multi -loss 

strategy and modified U-net structure, our model is quite stable in  train ing and capable of 

preserving finer details of the original face images. The extensive experimental results have 

demonstrated the effectiveness of our method on generating high-quality and realistic attribute-

reversed face images. 

1. Introduction 
Face attribute manipulation is a task to edit face attributes presented in an image, e.g. facial expression, 
emotion, age and so on. Compared with face style transfer task [1], it is more challenging due to the 
requirement of only modifying some specific regions in the source image while keeping other regions 
unchanged. Thanks to the generative adversarial networks (GANs)[2], this task has experienced 
significant improvement, with the quality of synthetic images highly improved. 

Many methods utilize original images as inputs and try to reconstruct the finer details of the 
original images when modifying the interest areas of the input images. IcGAN[3] leverages 
conditional code and a latent representation inferred from a given image by a pre-trained encoder to 
generate desired image. Nevertheless, the quality of the reconstruction from the latent representation is 
not well-pleasing as there is not an explicit mechanism for inverse mapping of an input image to the 
latent vector which is necessary for image reconstruction. Recent works [4][5] have witnessed great 
success in the task of image-to-image translation which takes original images as input and outputs the 
transformed ones without explicit embedding. For instance, lsola Phillp et al.[6] have proposed the U-
net, which adds skip connections between the symmetrical layers of the encoder and decoder, to 
facilitate the reusage of information during backpropagation. Inspired by their architecture, we 
proposed a new approach based on the structure of U-net for the purpose of face attribute manipulation. 
The proposed approach could automatically perceive the “mode” of the facial attributes present in the 
input image and learn to translate it to its inverse pattern. To ensure image consistency and preserve 
key information between the input and output face images, cycle consistency loss (from CycleGAN[7]) 
was applied to the generator. However, different from CycleGAN where two separated generators are 
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used for domain “A→B” and “B→A” transformations respectively, only one generator network was 
employed in our method. 

To guide the generated images towards certain patterns, methods like[6][7][8] have been proposed 
with an additional classifier embedded in the discriminator of GANs. For example, A.Odenaetal.[6]  
propose the AC-GAN, using the auxiliary classification loss to ensure the generated images globally 
coherent with the input data. In the work [7], L. Zhang et al. modify the discriminator in AC-GAN to 
produce paintings with different styles. Similarly, StarGAN[8] introduces an auxiliary classifier that 
uses an additional discriminator to control multiple domains. 

Following their works, we extended the model to a multi-task setting, in which the discriminator 
differentiates face images between fake and real, and meanwhile handles classification task with 
respect to facial attributes by minimizing the classification error related to the known attribute labels. 
Generally, our contributions are summarized as follows. 

 A GAN structure with only one generator is proposed for face attribute manipulation without 
any conditional inputs offered.  

 A modified U-net is proposed to ensure attribute specific areas easier to be manipulated. 

 A new quantitative analysis metric is proposed to evaluate the generated images’ quality.  

2. The Proposed Method 
Our method aims to train a generator G which can perceive the “mode” of the facial attributes present 
in the input image and translate it to its inverse pattern, the architecture is presented in figure 1(a). Our 
model addresses each of the facial attributes independently. The face generator G is trained to generate 
a photo-realistic face image from the observed face image x: Xfake = G(x), and the auxiliary classifier 
discriminator D imposes a distribution constraint over the source images,  along with a probability 
distribution over the attribute labels, P(S|X) = Ds(x),P(C|X) = Dc(x).  

 

Figure 1. (a): The blue line in the upper framework indicates taking input image x0 as input and output 
attribute-inverse image x1, while the orange line represents taking x1 as input and        generate the 

reconstruction  �̃�0. The nether structure is the multi-task discriminator network D. (b): The 
architecture of the original U-Net (upper) and our modified one (nether). 

2.1. Objective 
During training, the process is supervised by an auxiliary classifier discriminator D. In the min-max 
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training process, G generates images that cannot be differentiated from real ones with the face 
attributes opposite to input images while D is trained in a joint multi-task fashion that combines the 
task of distinguishing real/generated images and the task of attributes classification.  

2.1.1 Adversarial loss. Adversarial loss Ladv was leveraged to make the generated images more 
realistic, it is defined as 

 [ ( )] [1 ( ( ))]adv x s x sL logD x logD G x    , (1)                              

where generator G maps the given face image x to the output G(x) to fool D, and D tries to 
differentiate the generated image G(x) from the real one by the terms Ds(x). So D is trained to 
maximize Ladv while G is trained to minimize it. The parameters of G and D are iteratively trained and 
updated. 

2.1.2 Attribute classification loss. In our method, G is tra ined to generate modified images where their 
attributes are opposite to the original ones. So we extended an attribute classification task on the top of 
D by the classification loss Lcls to force the generator to produce attribute-inverse images. The losses 
from original images and fake images are respectively defined as 

 , [ ( | )]
realcls x c clsL logD c x     (2) 

 
, [ ( | ( ))]

fakecls x c clsL logD c G x
   , (3) 

where the term Dcls(x) represents a probability distribution over face attributes. 
realclsL  is calculated 

from the real face images, it is used to optimize D, and 
fakeclsL  which is calculated from the outputs, it 

is used to optimize G. c and c' denote original attribute label and inverse attribute label, respectively. 

2.1.3 Forward-backward consistency loss. By minimizing attribute classification loss and the 
adversarial loss, G is capable of producing photorealistic face images with inverse attributes that are 
expected to be changed. To further preserve the attribute-irrelevant details of input images in the 
translated images, we employed a reconstruction loss Lrec and a feature matching loss Lfm as forward 
backward consistency loss to measure the differences between real image x and reconstructed image 
G(G(x)) on pixel and features level respectively. The reconstruction loss Lrec is computed on pixel 
level: 

 
1

[ ( ( )) ]rec xL x G G x   ,  (4) 

where the cost function is based on L1 norm which encourages less blurring than L2 sense[4]. The 
feature matching loss Lfm[9] is based on the discriminator D, it is used to stabilize the training process. 
In details, we extract the features from multiple layers of the discriminator, learning to match these 
representations from the real image x and the reconstructed image G(G(x)). It is defined as 

 
1

1

1
[ ( ) ( ( ( ))) ]

T

fm x i i

i i

L D x D G G x
N

   , (5) 

where the term Di(x) represents the i-th layer feature representation in the discriminator D, Ni denotes 
the number of pixels in each layer and T is the total number of layers. 

The final objective function of G and D are defined by 

 1 2 3fakeG adv cls rec fmL L L L L        (6) 

 4 realD adv clsL L L   , (7) 

Where λi, i = 1,2,3,4 denote hyper-parameters that balance the weights of different loss functions. 

2.2. Network Details 
As we know, the hidden layers contained in CNN allow the network learn representations 
hierarchically from lower to higher level[10]. Representations from lower layers respond to general 
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features in the images, such as edge, color, texture, etc., while the representations from middle to 
higher layers are progressively class-specific and contain information from partial to complete 
regarding the objects. In the case of face attribute manipulation, we would like to only modify the 
interest areas (e.g., month, hair and glasses) and meanwhile keep other regions untouched. While the 
original U-net tends to remain all details of original images in the generated images due to full skip 
connections between all corresponding layers, which makes the modification of attr ibute-relevant area 
not very obvious. To address this issue, we added 1×1 filters between corresponding layers of the 
encoder and decoder to reduce redundant information. Meanwhile, we set different numbers of 1×1 
filters for different skip connections to control the shared contents. In experiments, the number of 1×1 
filters for high-level skip connections was set to half of the number of input feature maps, while one 
quarter for low-level ones. Hence, the modified U-net could share more class-specific contents and 
object information which makes the attribute-relevant areas easier to be manipulated and some high-
level information like identity more likely to be preserved. An attribute classifier was added on top of 
discriminator D to give both a probability distribution over the source images and a probability 
distribution over the attribute labels. In this way, the discriminator can produce images not only are 
indistinguishable from real images but also possess the inverse attributes compared with original 
images. Figure 1 (a) illustrates the framework of the proposed model, and figure 1 (b) shows the 
structure of the original U-net and our modification one. 

3. Experiment 

3.1. Experimental Settings 
Our model was trained on the CelebFaces Attributes (CelebA) dataset[11] which contains more than 
200, 000 celebrity images, annotated with 40 binary attributes, such as eyeglasses, male, pale skin, etc.  

  
The center part of the aligned images are cropped and scaled to 128×128. As the attribute labels are 

highly biased in the CelebA dataset, we employed a simple oversampling strategy[12] to relieve the 

     
 

(a) W/Wo berad                                 (b) Mouth open/close                  (c) W/Wo eyeglasses 
 

      
                               (d) Young/old                                                            (e) Male/Female 

Figure 2. Face attribute manipulation on the CelebA dataset. For each sub-figure, the first row 
shows the original face images. The second and the third row are the manipulated images using 

the proposed method and CycleGAN, respectively. 
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impact of imbalances in the training process. The hyper-parameters λ1， λ3，λ4 were set to 1, while λ2 
was set to 10.  

Five types of attributes: including global and local ones, were investigated to evaluate the 
performance of our method. The Cycle-GAN[5], which consists of two generators, was reimplemented 
to compare with the proposed method. In the testing phase, 2000 images from the attribute-positive 
class and attribute-negative class were selected, each category with 1000 images. Noted that all these 
selected images for testing were unseen during the training phase. 

3.2. Attribute Inverse 
In the experiments, we first evaluated the proposed method by visual quality. Three types of local 
attributes, eyeglasses, mouth_open and no_beard and two types of global attributes, young and male 
were selected for qualitative analysis. The overall observations of the modified results are showed in 
figure 2. As shown in figure 2, the results by our method preserve almost all the details of original face 
images except the areas corresponding to the target attributes, whereas the performance of CycleGAN 
is not so desirable. For the attributes month_open and no_beard, both our method and CycleGAN 
achieve promising performance. However, for the more challenging task, manipulation on eyeglasses, 
which need to generate new object (the glasses) on the original image, our method performs much 
better than CycleGAN. As to male/young manipulation, more details such as haircut, skin texture, face 
shape are required to changed, and it is generally more challenging than manipulation on local 
attributes. In this task, the performance of our method is significant better than CycleGAN. Moreover, 
by employing the feature matching loss[9], the training of our method is more stable, dual learning and 
minimizing attribute classification loss can help the generator to attach more attention on attribute -
specific areas, this is the reason why our method is well-qualified and steadier among different kinds 
of attributes. 

3.3. Quantitative Analysis 
To further quantify the performance of our proposed approach, we proposed a novel quantitative 
metric, the discrepancy of feature norm (DFN), to evaluate image quality of the generated face images. 
The Fréchet Inception Distance (FID) [13], a widely used metric for the evaluation of GAN-generated 
images, is also employed to compare with DFN. 

Table 1. Comparisons of our method and CycleGAN on FID and DFN 

 FID/Mean of DFN 

model W/Wo beard Mouth Open/close W/Wo eyeglasses Young/Old Male/Famale 

ours 18.8/0.9 22.5/0.94 16.6/0.94 28.7/0.89 21.1/0.91 

CycleGAN 25.0/0.86 28.5/0.81 31.6/0.83 38.1/0.79 30.7/0.86 

3.3.1 valuation of Discrepancy of Feature Norm. We proposed the Discrepancy of Feature Norm 
(DFN) inspired by [14], based on the analyzation of face representations outputed from Face 
Recognition CNN (FRCNN). The authors in [14] explore the components of face features and present 
interior relationships between face image qualities and face representations using softmax loss.  

Specifically, in the feature space of FRCNN, the distance of a face image to the origin is affected 
by a range of issues including extreme views, distortion, strong occlusion, blurring, etc. The quality of 
the image increases with its distance to the origin. We applied these characters to measure the quality 
of generated face images by calculating L2 norm of face representations captured from a state of art 
face recognition network. Obviously, features of high quality face images achieve higher L2 norm 
than those of face images with extreme defects.  
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Figure 3. Comparisons of our method and CycleGAN on Distribution of DFN. 

We extracted the face features of the testing data xi and its corresponding translated image G(xi) 
from the face recognition network and calculate the ratio γi between the L2 norms of their face features. 
The ratio γi is defined as  

 

2

2

( ( ))

( )

i

i

i

G x

x







  (8) 

where ( )x  represents the outputs of feature extraction layer, i = 1,2,...,N, N notes the number of test 

data. Boxplot was used to indicate the distribution of all ratios DFN = {(x0, γ0),( x1, γ1),...,( xN, γN)} on 
the whole test dataset. It is clearly showed in figure 3 that our method obtains higher mean values than 
CycleGAN suggesting the generated images by our method is of better quality. For each type of 
attribute, our method achieves smaller interquartile range (IQR), the first quartile subtracted from the 
third quartile in the boxplot, which can be computed as: IQR = 75th percentile−25th percentile 
indicating the generated images by our method are much stable in quality. 

3.3.2 Evaluation of Fréchet Inception Distance. To verify the effectiveness of DFN, we employed the 
Fréchet Inception Distance (FID) to further quantify the generated images and compare with DFN. 
The FID has been widely used for image quantitative analysis for GAN-generated images, it is defined 
as  

 

1
2

2

2
( , ) Tr( + - 2( ) )x g x g x gFID x g        

  (9) 

where ( g g ) and ( x x ) are the covariance and mean of the sample representations from model 

distribution and data distribution, respectively. FID is used to evaluate the discrepancies between the 
original real images and its generated attribute-inverted images. We extracted the 2048-dimensional 
activations of the pool3 layer in Inception-v3 and leveraged Principal Component Analysis (PCA)[15] 
to output 1024-dimentional features. These features are used to calculate FID. The FID results, along 
with DFN results are showed in table 1, where we can observe the FID scores achieved by our method 
are much lower than those of CycleGAN, meaning the image qualities generated by our method are 
better than CycleGAN. Note these results are highly consistent with the results of the quantitative 
metric we proposed, which prove the proposed DFN is also suitable for image quality evaluation. 
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4. Conclusion 
We have proposed a novel approach for image-to-image translation between two face attribute 
domains using one single generator without conditional inputs. We have analyzed the information 
shared in the U-net and modified it for better application. The multi-task of discriminator on attribute 
classification and forward-backward consistency strategy allow the generator to only focus on attribute 
relevant areas while keep other regions untouched. Experiments results from visual quality evaluation 
and our proposed quantitative evaluation metric have showed that our method can successfully capture 
the “mode” of the input image and transform it to its inverse “mode”. 
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