Journal of Physics: Conference
Series

PAPER « OPEN ACCESS You may also like

- Signal quality in cardiorespiratory

Characterization of hand movements using a low zowang
ari Ifford an eorge ooday
cost electromyography sensor

- Fuzzy inference system (FIS) - long short-
term memory (LSTM) network for

. . . electromyography (EMG) signal analysis
To cite this article: G Laverde et al 2020 J. Phys.: Conf. Ser. 1514 012012 Ravi Suppiah, Noori Kim, Anurag Sharma

etal

- Accuracy assessment of CKC high-density
surface EMG decomposition in biceps

. . . femoris muscle
View the article online for updates and enhancements. H R Marateb, K C McGill, A Holobar et al.

@ = DISCOVER

how sustainability

The \ ' : intersects with
Electrochemical - :

Society

Advancing solid state &
electrochemical science & technology

This content was downloaded from IP address 3.144.127.232 on 09/05/2024 at 16:25


https://doi.org/10.1088/1742-6596/1514/1/012012
https://iopscience.iop.org/article/10.1088/0967-3334/33/9/E01
https://iopscience.iop.org/article/10.1088/0967-3334/33/9/E01
https://iopscience.iop.org/article/10.1088/2057-1976/ac9e04
https://iopscience.iop.org/article/10.1088/2057-1976/ac9e04
https://iopscience.iop.org/article/10.1088/2057-1976/ac9e04
https://iopscience.iop.org/article/10.1088/1741-2560/8/6/066002
https://iopscience.iop.org/article/10.1088/1741-2560/8/6/066002
https://iopscience.iop.org/article/10.1088/1741-2560/8/6/066002
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstcwm0mfoNtPcnZjDJISZYPN5osTDEPuUUP0MPwnAPR1J8EQOTneT_Srs5Y-oqL8Q1_EhUGBZGMs9rlkmX7uJDnnoeC6iNPKk_cdJ2Hxhfhqkz50l8biCi5BdOibTZ3WymtPduHanHTv64l1uVjn9PD90eWstBPfL69r2jn_b5nZFMGieC4ZdT-yrHJCRERRUgBsnzWjOxoZLe4W6tn8AcZMWQyfQ4ZGz3-BITg3WjiPm1x2MKN8UL6k1O4S1Q7iz62iUkeTIUKE25BmrVR9U842x7zm5ySECPucKg42PVH8wBD9cyk2WZCJvwJ-91xuiOZW051hNuFOwBP6zuabIKettsb2g&sig=Cg0ArKJSzApGfR6lsqtM&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

VI International Conference Days of Applied Mathematics (VI ICDAM) IOP Publishing
Journal of Physics: Conference Series 1514 (2020) 012012 doi:10.1088/1742-6596/1514/1/012012

Characterization of hand movements using a low cost
electromyography sensor

G Laverde!, S Salinas', D Montero', C Rueda'!, and M Altuve!

! Facultad de Ingenierfa Eléctrica y Electrénica, Universidad Pontificia Bolivariana,
Bucaramanga, Colombia

E-mail: danielfmontero@gmail.com

Abstract. Electromyography signals are commonly used to control prosthetic or orthotic
devices. The electrodes attached to the skin capture the muscular activity coming from
neuromotor signals. Robotic prostheses help to improve the quality of life of people who
suffer from physical disabilities such as amputations of lower or upper limbs. However, these
prostheses are quite expensive, and the operation of the robotic prosthesis depends on the
contraction muscles that generally uses two movements, contraction and relaxation (closing
and opening). In this paper, we propose the characterization of hand movements by means of
an inexpensive electromyographic sensor, the MyoWare AT-04-001, which acquired neuromotor
signals due to muscle contraction in the forearm. Four movements were recorded: flexion,
extension, opening and closing of the hand. Hand movements were performed at one movement
per second, as indicated by a metronome. Signals were acquired with an Arduino one at a
sampling frequency of 200 Hz for 30 s. Using time-domain, frequency-domain and nonlinear
measures we characterized the electromyography signal for each movement. We observed that
the closing and extension of the hand produced the greatest amount of variance and entropy
of the electromyography signal as well as the greatest energy in the frequency domain. These
results were related to the location of the electrode in the forearm, since the sensor was placed
in the muscles involved in the execution of these movements.

1. Introduction

Worldwide, about 200 million people experience some type of disability and have fewer options to
access services, such as health, employment, education and transportation, than people without
disabilities. In Colombia, almost two million people (approximately 6 % of the population) had
disabilities in 2005, and around one million people presented disabilities in 2017, of which 80000
people were from the department of Santander. Among the disabilities, physical disabilities
include people who suffer problems in the locomotor system, resulting in a decrease or absence
of motor or physical functions [1]. For example, amputations are physical disabilities that involve
the loss of a member of the body whether due to diseases, trauma, traffic accidents, accidents
at work, military accidents or antipersonnel mines [2].

In the last decade, a great technological advance has been achieved in the development of
devices, such as prostheses and orthotics, which have allowed improving the quality of life of
people with physical disabilities. These devices can simply focus on supplying the missing limb
or controlling limb movements by means of myoelectric signals commonly taken with surface
electrodes [3]. These electrodes capture the electrical signals from motor neurons that then carry
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the information to the brain to be transmitted to the muscles during muscle contraction [4].
Electromyography (EMG) signals have allowed the study and development of devices in the
area of medicine, particularly in the area of muscle rehabilitation that focuses on neuromuscular
damage or muscle atrophy. Thanks to prostheses, orthoses and exoskeletons, doctors have
helped improve the quality of life of patients who need special therapy treatments to reduce
their disability [5].

Several limb prostheses have been designed to treat physical disabilities. For example, the
I-Limb bionic prosthesis, a hand prosthesis developed by Touch Bionic, has five motors that act
independently with coupled sensors that generate different types of movement, their fingers are
articulated independently [6]. The Myo bracelet allows the recording of the electrical activity
of the muscles and sends the data to a computer or mobile device [7]. The classification of
hand movements has already been done using the Myo Armband [8]. In Colombia, Prostésica,
a company based in Barranquilla, designs and sells leg and hand prostheses and orthotics,
however, their cost varie from USD 25,000 to USD 35,000 and the devices tend to be quite
large, heavy and cumbersome. Following these previous works, in this paper we present
the characterization of four hand movements from EMG signals acquired in the forearm
using a low-cost device, specifically the MyoWare AT-04-001, whose cost is just USD 20.
The characterization of the signals is performed using temporal, frequency and non-linear
measurements. This characterization would be useful to conceive an automatic classifier of
hand movements and in the development of a low-cost hand prosthesis.

2. Materials and methods

2.1. Electromyography sensor description

The MyoWare AT-04-001, depicted in Figure 1, is a small, cheap and easy to use EMG sensor
consisting of three electrodes: one for the middle muscle electrode, tip of the end muscle
electrode, and a reference electrode. The card incorporates two clips, one for the middle muscle
electrode and one for the final muscle electrode. The MyoWare sensor can work up to £9 V, with
reverse polarity protection. Two outputs can be obtained, one filtered and another unfiltered
(raw signal). In this work, we processed the raw signal, since relevant information could be
suppressed in the filtered signal by the filter embedded in the card.
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Figure 1. Characteristics of the MyoWare At-04-001 EMG sensor [9].

2.2. Data collection protocol

We used the MyoWare AT-04-001 sensor to collect four moments of the hand. To do this, three
steps were carried out, as depicted in Figure 2. In the first step, the sensor was placed on the
forearm, specifically, in the radial flexor muscle carpo [10], because in this area, the electrical
activity of the neuromotor signals corresponding to the hand movements is strong.
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Since the output of the MyoWare AT-04-001 sensor is an analog signal, we used the analog-
to-digital converter of an Arduino One as second step, by mapping the input voltage ranging
from 0 to 5 V to 0 to 1023 levels. The sampling frequency was set to 200 Hz and the serial
communication speed to 115200 baud.

Finally, the data was exported to MATLAB® R2016a (The MathWorks, MA, USA) for

processing, storage and visualization.
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Figure 2. Steps carried out to collect the EMG data.

2.8. Hand movements

Four movements of the hand were collected from a young healthy person. The person performed
the experiment sitting, with their back straight, resting completely on a flat surface. The
forearm was suspended in the air forming an angle of 90° with the arm. The hand was relaxed
in a natural way. The data was acquired in the right forearm. Four movements of the hand
were performed [11,12]:

(i) Closing (fist): as illustrated in Figure 3(a).
(ii) Flexion (wavein): refers to the decrease in the angle of the joint from the anatomical position
to the palm of the hand, as illustrated in Figure 3(b).

(iii) Extension (waveout): defined as the increase of the articulation angle from the anatomical
position towards the back of the hand, as illustrated in Figure 3(c).

(iv) Opening (spread): as illustrated in Figure 3(d).

Regarding the above, the movements are similar to those of the Myo gesture control armband.
The movements of the hand were made at a rate of one movement per second during 30 seconds.
The person listens to a metronome set at 60 beats per minute through headphones and performs
the movement at the moment of listening the beat.
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(a) (b) (c) (d)

Figure 3. Movements of the hand. (a) fist, (b) wavein,
(¢) waveout, and (d) spread.

2.4. Features of the electromyography signals

We estimate different features of the EMG signals for each hand movement on three different
domains: time, frequency and nonlinear. In the time domain, we computed the mean, median,
variance, kurtosis, skewness and interquartile range (IQR) of the signals. In the frequency
domain, we estimated the total energy and the magnitude and locations of the two greatest
peaks in the power spectral density of the signals obtained through the fast Fourier transform
algorithm. Finally, the Shannon entropy of the signals were computed as a measure of
information content.

3. Results

Figure 4 shows an excerpt of the EMG signals for each hand movement. We can clearly
observe the different dynamics and amplitudes of the signals captured by the EMG sensor when
performing the hand movement. For instance, the fist and wavein movements have stronger
amplitudes while the waveout movement has the lowest amplitude.
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Figure 4. EMG signals caputed by the sensor for different hand
movements. (a) fist, (b) wavein, (c¢) waveout, and (d) spread.
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Figure 5 shows the power spectral density of the EMG signals on the range [0, 5] Hz, for each
hand movement. The mean value of the signals was eliminated to reduce their DC value (offset)
given that it can shade other frequency components presented in the signal. We can observe a
peak around 1 Hz corresponding to the rate at which the movements were performed. Table 1

1514(2020) 012012 doi:10.1088/1742-6596/1514/1/012012

shows the features extracted from the EMG signals for each hand movement.
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Figure 5. Power spectral density of the EMG signal for each hand
movement. (a) fist, (b) wavein, (c¢) waveout, and (d) spread.

Table 1. Values of the features for each hand movement.

Feature Fist Wavein Waveout Spread
Mean (v) 24184  2.4186 2.4196 2.4180
Median (v) 24194  2.4194 2.4194 2.4194
IQR (v) 0.0147  0.0147 0.0098 0.0098
Variance (v?) 0.0008  0.0005 0.0000 0.0001
Kurtosis 14.4765 15.9446  4.7597  14.7917
Skewness -0.0954 -0.1013  0.0930  -0.3373
Energy (v?) 0.0333  0.0223 0.0026 0.0061
Magnitude of the 1st peak 0.0021  0.0033 0.0014 0.0015
Frequency of the 1st peak (Hz)  1.0500  1.0500  0.2441 1.0500
Magnitude of the 2nd peak 0.0011  0.0010 0.0013 0.0006
Frequency of the 2nd peak (Hz) 2.1000  0.2197  0.3662 0.5127
Entropy 0.8029 0.9119 0.4253 0.9047
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Table 1, we can observe that the fist and wavein movements have higher IQR, variance, energy
and entropy than waveout and spread. Moreover, the fist, wavein and spread movements have
similar distribution (leptokurtic and skewed to the left). The two most significant oscillations
of the signals occurred at around 1 Hz (the rate of the hand movement) and between 0.22 Hz
and 0.51 Hz, except the fist movement which was around 2 Hz.

4. Discussion
The location of the sensor in the radial flexor muscle carpo leads to the closing hand movement
(fist) signal with larger energy, variance and entropy than the other movements, given that,
at this location, the neuromotor signals concentrate more when the muscle is contracted. In
contrast, the extension movement (waveout) produced the lowest energy, variance and entropy
of the EMG signal, given that the contraction of the muscle was not recorded with larger
amplitude at the location of the sensor, i.e. the sensor is on the back of the contracted muscle.
Using another sensor placed at the muscle contracted when the waveout and spread movements
take place would allow improving the quality of the signal recorded and better characterize these
movements. Our research team is currently working in this direction.

The characterization of signals and the feature extraction are fundamental steps for conceiving
a system that automatically detects and classifies an event, in this case, the movement of
the hands. We are also interested in the automatic detection and classification of the hand
movements with the aim of conceiving a hand prothesis.

5. Conclusion

The characterization of EMG signals acquired using a low-cost sensor in the forearm of a subject
performing four different hand movements (extension, flexion, closing and opening hand) was
successfully carried out using different measures issues from time-domain, frequency-domain and
nonlinear methods. Using only one sensor, different measures were obtained for each movement,
particularly, the variance and the entropy of the signals and the energy of the power spectral
density of the signals were different among the hand movements.
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