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Abstract. High-order harmonic generation by orthogonally polarized two-color (OTC) laser
fields is analysed using strong-field approximation and quantum-orbit theory. Results for the
field components frequency ratio of 2:1 and 3:1 are presented and compared. We have shown
that, depending on the relative phase between the field components, the shape of the high-
harmonic spectrum can be very different from that obtained by a monochromatic linearly
polarized laser field. It is also shown that it is possible to generate elliptically polarized high-
order harmonics with very high photon energies using OTC laser field with the frequency ratio
of 3:1 and a long fundamental wavelength. An effective relative phase control of the harmonic
emission is demonstrated. The obtained results are explained using the quantum-orbit theory.

1. Introduction

For various applications, such as the investigation of magnetic materials or chiral molecules,
elliptically polarized coherent soft x rays are a mandatory tool [1]. It is very desirable to have
tabletop schemes for their production [2]. In the high-order harmonic generation (HHG) process,
energy is absorbed from the laser field and re-emitted in the form of a high-energy photon, which
might have the desired properties. However, a linearly polarized laser field generates only linearly
polarized harmonics. Hence, in order to generate elliptically polarized soft x rays, we need more
a complex laser field configuration. One such configuration, proposed in 1995 [3], is the so-
called bicircular laser field, which consists of two coplanar counter-rotating circularly polarized
fields of different frequencies equal to integer multiples of a fundamental frequency ω. The
high-order harmonics generated by a bicircular laser field are circularly polarized with helicities
that alternate from one harmonic order to the next. Combining a group of such harmonics one
obtains a pulse in the form of a star-like structure consisting of three linearly polarized pulses,
which are rotated versus one another by 120 degrees [4] (for a frequency ratio of 2:1). For HHG
by atoms having a p ground state the harmonics of one or the other helicity are stronger and it
is possible to generate an elliptical or even circular attosecond pulse train [5, 6, 7]. Theoretical
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investigations of HHG by a bicircular field were presented in [8] for a zero-range-potential atom
and in [9] based on the strong-field approximation (SFA) and quantum-orbit theory (see also
[10] and references therein).

In this paper we will consider another bichromatic field configuration – the orthogonally
polarized two-color (OTC) laser field. This field consists of two orthogonal linearly polarized
fields with a frequency ratio of 2:1 or 3:1 and fixed relative phase. The frequency ratio 2:1,
i.e. the ω–2ω OTC field, has been used for many applications (see [11] and references therein),
while the ω–3ω OTC field has received almost no attention at all (we have found only an old
experimental paper [12]; first theoretical results for this field can be found in [8]). For HHG
by the ω–2ω OTC field the harmonics are linearly polarized: odd harmonics are polarized in
the direction of the ω field component, while the even harmonics are linearly polarized in the
direction of the 2ω component. On the other hand, for the ω–3ω OTC field only odd harmonics
are emitted, which have elliptical polarization. For the investigation of HHG by the ω–2ω OTC
field, the discovery of the phase-dependent enhancement of the HHG yield was crucial [13]. (see
also [14, 15]; for further developments, see references in [11]).

In the present work we will analyze HHG by neon atoms and ω–2ω or ω–3ω OTC fields. In
section 2 we introduce the strong-field approximation and quantum-orbit theory, applied to the
OTC fields. In section 3 we present our numerical results, while our conclusions are given in
section 4. We use the atomic system of units.

2. Theory

The electric-field vector of our OTC field is

E(t) = E1 cos(ωt)êx + E2 sin(jωt+ φ)êy, j = 2, 3. (1)

Here the unit vectors êx and êy span the xy plane and we consider ω–2ω and ω–3ω OTC fields
with the relative phase φ between the two field components.

We calculate our results using the SFA applied to the HHG process [16, 17, 18, 19, 20, 10].
The nth harmonic intensity

In =
(nω)4

2πc3

(

|T x
n |

2 + |T y
n |

2
)

(2)

is related to the components T x
n and T y

n of the T -matrix element, which are calculated as the
following integral over the recombination time t:

Tn = T x
n êx + T y

n êy =

∫ T

0

dtd(t)einωt/T, T = 2π/ω. (3)

The time-dependent dipole d(t) implies an additional integral over the ionization time t0:

d(t) = −i

(

2π

i

)3/2 ∫ t

−∞

dt0
(t− t0)3/2

〈ψg|r|kst +A(t)〉〈kst +A(t0)|r ·E(t0)|ψg〉e
iSst . (4)

Here A(t) = −
∫ t dt′E(t′), kst = −

∫ t
t0
dt′A(t′)/(t − t0) is the stationary momentum, and ψg is

the p ground-state atomic wave function of the neon atom modelled by a linear combination of
Slater-type orbitals. The stationary action is Sst ≡ −Ip(t− t0)−

∫ t
t0
dt′ [kst +A(t′)]2 /2.

Rather than by numerical integration, the above integrals can be evaluated using the saddle-
point method, which leads to the conditions ∂Sst/∂t0 = 0 and ∂(Sst + nω)/∂t = 0. From these
conditions we obtain the following system of equations

1

2
[kst +A(t0)]

2 = −Ip, nω =
1

2
[kst +A(t)]2 + Ip, (5)
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for the complex times t0 and t. The energy of the emitted nth harmonic is nω and Ip is the
ionization potential of the neon atom. Physically, the conditions (5) express energy conservation
at the ionization and recombination times. For a linearly polarized laser field, we classified the
saddle-point solutions by the multi-index (α, β,m) ≡ s [21]. The indexm = 0, 1, 2, . . . determines
the approximate length of the travel time Re (ts − t0s) in multiples of the laser period T . The
index β = ±1 distinguishes the two pairs of solutions within one optical cycle, while the longer
and shorter orbits of each pair are discriminated by the index α = ±1. The same classification
can be used for the saddle-point solutions for the OTC fields [11].

The T -matrix element in the saddle-point approximation can be written as Tn =
∑

s d(ts)e
inωts . From (5) we see that, for the ω–3ω OTC field (1), if {t0s, ts} is a solution of the

saddle-point equations then so is {t0s+T/2, ts+T/2}. For this field we have d(ts+T/2) = −d(ts)
and Tn =

∑

s d(ts)e
inωts(1− einπ), so that only odd harmonics are emitted and they have both

êx and êy components. Therefore, the emitted high harmonics are elliptically polarized. The
ellipticity of the nth harmonic is

εn = sgn(ξn)

√

√

√

√

1−
√

1− ξ2n
1 +

√

1− ξ2n
, ξn =

Im (2T x∗
n T y

n )

|Tn|2
. (6)

The electron trajectories (quantum orbits) r(t) and velocities v(t) [22, 23, 24, 25, 26], are
calculated by introducing the saddle-point solutions t0s and ts into the following solutions of the
Newton equation of motion r̈(t) = −E(t):

r(tR) = Re

[
∫ tR

t0s
A(t′)dt′ + (tR − t0s)kst

]

, v(tR) = Re [kst +A(tR)] . (7)

Here the time tR ∈ [Re t0s,Re ts] is real and we will project r(tR) and v(tR) into the real plane.

3. Results

We will present numerical results for HHG by Ne atoms and an OTC field having the fundamental
wavelength 1300 nm and the first component intensity I1 = E2

1 = 2 × 1014 W/cm2. We will
compare the results for the ω–2ω and ω–3ω OTC fields. In order to see if the saddle-point
classification by the multi-index (α, β,m), introduced for a monochromatic linearly polarized
field in [21], is applicable to the OTC fields, we compare the SFA and saddle-point results for
various intensities I2 = E2

2 of the second field component, from a few percent of I1 to I2 = I1.
We will also present saddle-point solutions for complex ionization and recombination times as
well as examples of quantum orbits.

In figure 1 we present SFA results for equal component intensities. From the upper left panel
we see that, for the ω–2ω OTC field and the phase φ = 0 rad, the spectrum does not exhibit
the typical behaviour known from the monochromatic field, i.e. a flat plateau with an abrupt
cutoff. Instead, having a typical fast decrease for the first few harmonics followed by a flat part
for the low harmonics, after the harmonic n = 40 the spectrum exhibits an intensity increase,
forming a semicircular shape with its maximum intensity near n = 100, and then decreases up
to the harmonic n = 150 by which order the harmonic intensity is negligible. In the region near
the maximum (n = 100) the odd harmonics are substantially stronger than the even harmonics.
Odd and even harmonics are linearly polarized but in mutually perpendicular directions. In the
same panel we also present the results obtained for the relative phase φ = 1 rad. We see that in
the high-energy region now the even harmonics are stronger. The spectrum is structured and
exhibits a sharp peak near the cutoff at the harmonic order n = 140.

In the upper right panel, we present harmonic spectra for the ω–3ω OTC field for several
different values of the relative phase. Only odd harmonics are emitted and they are elliptically
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Figure 1. SFA results for HHG by Ne atoms and ω–2ω (left panel) and ω–3ω (right panel)
OTC fields having equal component intensities I1 = I2 = 2 × 1014 W/cm2 and wavelength
1300 nm. Top panels: Harmonic intensities as functions of the harmonic order for the relative
phases φ = 0 rad and φ = 1 rad (left) and φ = kπ/4 rad, k = 0, 1, 2, 3 (right panel). Middle
and bottom panels: the results are presented in false colors as a function of the relative phase φ
and harmonic order n. Middle (bottom) left panel: Logarithm of the harmonic intensity of odd
(even) harmonics. Middle (bottom) right panel: Logarithm of the harmonic intensity (harmonic
elipticity).

polarized. For the relative phase φ = 0 rad the spectrum forms a characteristic flat plateau
with a sharp cutoff. The form of the plateau and the cutoff depend on the relative phase (for
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φ = 0.75π rad there are no plateau and cutoff at all). For a monochromatic linearly polarized
field, the harmonic intensity in the plateau exhibits sharp oscillations. This is explained by the
interference of two (or more) dominant quantum orbits. However, for the ω–3ω OTC field with
φ = 0 rad the plateau is flat (except in the cutoff region) which indicates that only one quantum
orbit is dominant (the same holds for the ω–2ω spectrum for φ = 0 rad in the left panel).

Before we investigate this, in the remaining panels of figure 1 we explore in more detail how
our results depend on the relative phase. In the left middle and bottom panels, for the ω–2ω
OTC field, we present the harmonic intensity (in atomic units, on a logarithmic scale and in
false colors) as a function of the relative phase φ and harmonic order n. We see that both
for odd (middle left panel) and even (bottom left panel) harmonics there are regions in which
the harmonic intensity exhibits a sharp maximum. For the odd harmonics the corresponding
harmonic order is slightly below n = 100, while the corresponding harmonic phase is slightly
larger than zero. On the other hand, for the even harmonics the sharp maximum is near the
harmonic order n = 140 and the phase near φ = 1 rad (this behavior is better visible on a linear
false-color scale). Therefore, a very efficient phase control of the HHG process by OTC fields is
possible. This is even more visible for the ω–3ω OTC field for which the results are shown in
the right middle panel: the harmonic intensity exhibits a sharp peak (much sharper and having
much higher intensity than in the ω–2ω case) near n = 140 for a wide interval of the relative
phase between 0 rad and 1.2 rad. For practical applications it is important that the harmonics
generated by the ω–3ω OTC field are elliptically polarized. The ellipticities are plotted in the
right bottom panel of figure 1. We see that there are regions where both the harmonic ellipticity
and intensity are large.

In figure 2 we compare the spectra of high harmonics generated by OTC fields calculated
using the SFA (left panels) and the saddle-point method (right panels). The intensity of the
first component is I1 = 2 × 1014 W/cm2, while the second-component intensity changes from
zero to 30% of I1, as denoted in the upper left corner of each panel. For the ω–2ω OTC
field and low intensity of the second component the spectrum is similar to that generated by a
monochromatic linearly polarized field, characterized by an oscillatory plateau and an abrupt
cutoff. From the upper right panel we see that there are four pairs of partial saddle-point
contributions to the harmonic yield. They are presented by solid and dashed lines having
different colors for different second-component intensities (the contributions of the dashed lines
should be disregarded after their cutoffs). When the second-component intensity inceases the
contributions of the longer quantum orbits, which contribute to lower harmonic orders, become
suppressed. This is particularly pronounced for the case I2 = 30%I1 (blue lines). In this case,
only one quantum orbit contributes (blue solid line) and the partial contribution of this orbit to
the harmonic yield has exactly the semicircular shape which we noticed in figure 1. Comparing
the blue curves in the left and right upper panels in figure 2 we conclude that the saddle-point
result obtained using the contribution of only one quantum orbit is in excellent agreement with
the results of the numerical SFA integration. It should be noticed that the SFA results for the
even and odd harmonics are different, which is responsible for the oscillations in the SFA curves,
while in the saddle-point method the harmonic order is a continuous parameter. Similar results
for the ω–3ω OTC field are presented in the lower panels of figure 2. We see that, when the
second-component intensity is increasing up to 0.3I1, the contribution of only one quantum orbit
becomes dominant. This partial contribution (blue line) completely determines the shape of the
HHG spectrum and agrees excellently with the SFA result presented in the lower left panel.
The dominance of only one quantum orbit explains why the harmonic plateau is smooth and
practically flat.

In [21] for a monochromatic linearly polarized field we classified the saddle-point solutions
by the multi-index (α, β,m). In figure 2 we exhibited the partial contributions to the harmonic
yield of eight such solutions (or four pairs of solutions (β,m) having α = ±1; the solutions



28th annual International Laser Physics Workshop, LPHYS'19

Journal of Physics: Conference Series 1508 (2020) 012001

IOP Publishing

doi:10.1088/1742-6596/1508/1/012001

6

25 50 75 100 125 150
Harmonic order

-23

-22

-21

-20

-19

-18

-17

lo
g 10

[H
ar

m
on

ic
 in

te
ns

ity
 (

a.
u.

)] 0.5%
2.5%
15%
30%

25 50 75 100 125 150
Harmonic order

-26

-24

-22

-20

-18

lo
g 10

[H
ar

m
on

ic
 in

te
ns

ity
 (

ar
b.

 u
ni

ts
)] 0.5%

2.5%
15%
30%

25 50 75 100 125 150
Harmonic order

-23

-22

-21

-20

-19

-18

-17

lo
g 10

[H
ar

m
on

ic
 in

te
ns

ity
 (

a.
u.

)] 0%
5%
15%
30%

25 50 75 100 125 150
Harmonic order

-23

-22

-21

-20

-19

-18

-17
lo

g 10
[H

ar
m

on
ic

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)]

0%
5%
15%
30%

Figure 2. Comparison of harmonic spectra calculated by the SFA (left panels) and by the
saddle-point-method (right panels) for Ne atoms and ω–2ω (upper) and ω–3ω (lower panels)
OTC fields having wavelength 1300 nm, the first component intensity I1 = 2× 1014 W/cm2 and
the relative phase φ = 0 rad. The intensity of the second component is given in percent of the
intensity I1, as denoted in the legends.

α = 1 and α = −1 are distinguished by the solid and dashed lines). In figure 3 we present the
corresponding ionization times t0 and recombination times t in the complex plane. We can see
how these solutions move in the complex plane when the second OTC-field component-intensity
increases. Our way of presentation is the same as in [21]: the harmonic order changes along
each curve from a small to a large value beyond the cutoff. At the cutoff the two curves from
the pair α = ±1 approach each other and the cutoff harmonic order corresponds to the point of
the closest approach. Thereafter, the curves move in opposite directions and the contribution
to the harmonic yield of one of them (denoted by the dashed line) should be dropped since it
is divergent after the cutoff (this problem is cured in the uniform approximation). We noticed
that, upon an increase of the second-component intensity, the solutions travel and may rotate
in the complex plane so that the “dashed” and the “solid” solutions interchange. This usually
happens for I2 > 0.05I1.

In order to further explain the numerical results for the HHG spectra, we apply quantum-orbit
theory. In figure 4 we separately present the results for the ω–2ω (left panel) and ω–3ω (right
panel) OTC fields. In the upper (lower) left subpanel we show the corresponding electric-field
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Figure 3. Saddle-point solutions for the complex times t0 and t in units of the optical period
T = 2π/ω for HHG of Ne atoms by ω–2ω (upper) and ω–3ω (lower panels) OTC fields having
the wavelength 1300 nm, the first-component intensity I1 = 2 × 1014 W/cm2 and the relative
phase φ = 0 rad. The second-component intensity is given in percentages of the intensity I1
and the corresponding solutions are presented by different colors, as denoted in the legends.
The solutions (α, β,m) = (±1,−1, 0), (±1, 1, 1), (±1,−1, 1), (±1, 1, 2) are presented, with the
index (β,m) indicated, for each pair of subpanels, in the upper left corner of the subpanel that
corresponds to the ionization time t0 (the right-hand subpanel corresponds to the recombination
time t). The contributions of the solutions represented by dashed lines should be dropped after
the cutoff.

vector E(t) (vector potential A(t)), while in the upper (lower) right subpanel we present the
electron trajectory (velocity) from the ionization time (marked on the trajectory by the letter
I) to the recombination time (letter R). We display only the dominant shortest trajectory. The
electron is “born” at the “exit of the tunnel” a few atomic units away from the nucleus and
returns almost exactly to the nucleus. The shape of the trajectory is close to linear, the electron
follows a line in the negative x direction, turns around and returns to the nucleus following a
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Figure 4. The ω–2ω (left panel) and ω–3ω (right panel) OTC electric-field vector E(t) (upper-
left subpanels), vector potential A(t) (lower left), electron trajectory r(t) (upper right), and
velocity v(t) (lower right) between the ionization time (I) and recombination time (R). The
results are for Ne atoms, the fundamental laser wavelength 1300 nm, the component intensities
I1 = 2 × 1014 W/cm2 and I2 = 0.3I1 and the relative phase φ = 0 rad. Harmonic order is
n = 125 and the results for the solution (β,m) = (−1, 0) are presented.

line, which is almost parallel to the first part of the electron trajectory but has the opposite
direction. This is similar to one-dimensional trajectories, which are characteristic for ionization
by a linearly polarized field, or to the shortest trajectories for the bicircular-field case, which
also approximately follow a straight line ([10] and references therein). For the ω–3ω OTC field
the electron velocity at the ionization time is almost zero so that the corresponding ionization
probability and the harmonic intensity are high. This is in agreement with the numerical SFA
results (compare the blue curve in the lower left panel in figure 2). On the other hand, for the
ω–2ω OTC field the corresponding velocity at the ionization time is relatively large. Having
in mind that the ionization probability decreases exponentially with the square of this initial
electron velocity, we expect that the corresponding harmonic intensity is also low. The upper
left panel in figure 2 confirms that this is true. The results presented in the other subpanels of
figure 4 can also help to explain the numerical results obtained. For example, the electric field is
strong at the ionization time, the vector potential and the electron velocity at the recombination
time are large, etc. Therefore, the quantum-orbit formalism is very helpful in explaining in detail
the HHG process in OTC fields.

4. Conclusions

High-order harmonic generation by orthogonally polarized two-color laser fields is investigated
theoretically using the strong-field approximation and quantum-orbit theory. Results for ω–2ω
and ω–3ω OTC fields are compared. In both cases the harmonic spectra can be controlled
by changing the relative phase between the field components. For comparable intensities of
the two field components and appropriate phases, the spectrum for the ω–2ω OTC field has a
semicircular shape very different from the usual shape for a monochromatic linearly polarized
laser field, which is characterized by an oscillatory plateau followed by a sharp cutoff. However,
for the ω–3ω OTC field, for a particular interval of the relative phases, it is possible to achieve
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the usual plateau-cutoff shape of the spectrum. Furthermore, the plateau can be flat. This
behaviour of the HHG spectrum can be explained using quantum-orbit theory, which shows
that in this case only one quantum orbit becomes dominant. The flat plateau for the ω–3ω
OTC field can be important for applications. Namely, combining a group of harmonics in the
plateau one can obtain an attosecond pulse train with better characteristics than in the case of
a monochromatic linearly polarized field.

High harmonics generated by the ω–3ω OTC field are elliptically polarized. We presented
results for HHG by Ne atoms and a wavelength of 1300 nm. If we want to increase the energy of
the high-harmonic photon into the soft x-ray region we should increase the laser wavelength and
intensity. The highest energy can be achieved using He atoms, which have an s ground state. We
have recently shown [11] that it is possible to generate elliptically polarized high-order harmonics
with photon energies in the keV region using He atoms and an ω–3ω two-color laser field with
mutually orthogonal linearly polarized components and a fundamental wavelength of 2200 nm.
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[11] Milošević D B and Becker W 2019 Phys. Rev. A 100 031401(R)
[12] Watanabe S, Kondo K, Nabekawa Y, Sagisaka A and Kobayashi Y 1994 Phys. Rev. Lett. 73 2692
[13] Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett.

94 243901
[14] Kim C M, Kim I J and Nam C H 2005 Phys. Rev. A 72 033817
[15] Kim C M and Nam C H 2006 J. Phys. B 39 3199
[16] Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
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