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Abstract. Aiming at the trajectory planning and compliance of the one-legged hop of a
quadruped robot, a method for designing the optimal trajectory of the bouncing by minimizing
the jerk index is proposed, and active compliance control is used to reduce the impact of the
end of the foot and improve the compliance of the one-legged. First, design a one-legged
bounce strategy. The bounce is divided into three phases: take-off phase, vacant phase, and
buffer phase, and trajectory optimization is performed for each phase. Secondly, a compliance
control method is designed. During the bouncing process, the impact of the foot end is large,
which will affect the stability of the robot and even destroy the mechanical structure of the leg.
The joint level adopts force-position mixed control, and the one-legged level adopts impedance
control to eliminate the impact of ground impact on one-legged. Finally, a one-legged model of
a quadruped robot was established in the Vortex multi-body dynamics system. Simulation
experiments have proved the feasibility of trajectory optimization and compliance control.

1. Introduction

The foot robot has a strong ability to adapt to unstructured terrain, and can walk on grass, gravel roads,
sandy soil, up and down slopes, steps, trenches and other terrains. Bounce is a kind of motion method
of foot robot, which can provide richer gait for foot robot. With the continuous development of foot
robots, there is also a higher requirement for the character of a one-legged.

In 1986, Raibert [1] began research on one-legged bounce robots, abstracting the robot's legs into a
spring-loaded inverted pendulum (SLIP) to achieve stable jumping motion. MIT's Cheetah3 [2]
proposed a method for quadruped robots to achieve the best jumping behaviour, including trajectory
optimization, accurate high-frequency tracking and stable landing control. MIT's minicheetah [3] has
achieved backflip.

Wang Shenjiang [4] and others used parametric optimization methods to achieve joint space
trajectory planning, and the optimization goal was to minimize the robotic joint control potential;
Zhong Jianfeng [5] and others proposed a jumping method based on cubic curve trajectory tracking to
meet the performance requirements of one-legged jumping and reduce the impact of the sole of the
foot; Chen Jianwen [6] and others divided the one-legged bounce into four stages. Using the analysis
of one-legged motion, the foot end trajectory was planned, and a one-legged control system was
designed. The inner loop is a position controller with speed feedforward, and the outer loop is force
feedback type impedance controller. Yin Peng [7] and others adopted the method of foot contact force
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compensation control and actively controlled the expansion and contraction of one leg to eliminate the
interference of the ground stiffness change on the body movement.

This article focuses on the one-legged bounce strategy and active compliance control during the
bounce process. The one-legged bounce strategy considers energy consumption to minimize the jerk
index to plan the movement path of the centroid. The bounce trajectory planning problem is
transformed into a second optimal planning problem. During the robot jumping process, there will be a
large impact on the foot and poor compliance. Ground contact will produce a large ground impact
force, which will affect the stability of the robot. In severe cases, it can damage the mechanical
structure of the leg. The robot's legs are not equipped with compliance cushioning elements, such as
springs, so active compliance control is particularly important. In this paper, joint level control is used
at the joint level, while impedance control is used at the one-legged level to achieve compliance
control of the one-legged.

Active compliance is mainly achieved through control algorithms. Among them, impedance control
and force-position mixed control are typical active compliance controls. Impedance control was
proposed by Hogan [8] in the 1980s, and force-level hybrid control was proposed by Mason and
Raibert et al. [9] Both are currently widely used in active compliance control of robots.

2. One-legged Jumping Strategy Design

Virtualize one leg into a spring, compress the leg, and then increase the amount of deformation of the
spring to make the foot end have an upward force to achieve a one-legged bounce. In order to achieve
efficient and reliable one-legged bounce, a reasonable bounce strategy is essential. The strategy is
divided into three phases, the take-off phase, the empty phase and the buffer phase.

2ol lT7

(a) Start (b) Lowest (c) End (d) Flying (e) Landing (f) Landing end

Figure 1. State of each stage of the jumping.

2.1. Take-off stage

The trajectory of the take-off phase is designed based on the position of the center of mass, the speed
of movement, and the energy consumption. Three points were selected as the boundary conditions
during the take-off phase, corresponding to (a), (b), and (c) in figure 1.

2.1.1. Boundary conditions in the take-off phase.
A. Take-off start point P, ,

h=h,
V=Y,
T (1)

Wherein h is the centroid position.
B. Take-off energy storage lowest point P,
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h=h
v=0
a=0
(2)
C. Take-off end point P,
h=h,
V= V1
a=
(3)

The take-off trajectory is planned after the take-off start point, and the proposed algorithm uses the
minimum energy consumption as an index to dynamically plan the trajectory. The Jerk value of the
candidate track is integrated as its energy consumption, and the track with the least energy
consumption is selected as the take-off track.

2.1.2. Design of jumping trajectory planning algorithm. In summary, the selected bounce end point is
a one-legged real-time online dynamic planning, and the take-off trajectory requires not only the
setting of the take-off point but also the minimum energy consumption. The bounce trajectory
planning problem is a quadratic optimal planning problem.

The z-axis desire trajectory can be represented by an n-th polynomial of order, and its polynomial
parameter vector is , then the objective function of the minimized trajectory Jerk is as follows,

z-"—3] P)T ([050’0’ 6a 241"":

) L Na n! n!
min =min E 0,0,0,6,24z,---,
. f(p) . J.tH ( (n—3)! (n—-3)!

T"_3] p)dr

“)
Where & is the number of trajectory segments and #(i=1,2,---,k) is the start and end time of each
foot end trajectory. By further planning the parameters of each point, the following equation
constraints can be constructed, where the starting point of the trajectory is the position of the
initialized one-legged, the midpoint is P, , and the end of the trajectory is P,. In addition, the position,
velocity and acceleration of the two foot-end trajectories before and after P, a should be continuous.

2.2. Vacant stage

As shown in (d) of figure. 1, because it is a one-legged bouncing in place, the leg in the vacant phase
maintains the leg length at the end of the take-off phase, and the posture remains unchanged. The
height of the bounce is estimated from the law of conservation of energy, ignoring energy loss.

- F
e 5)
2.3. Landing buffer stage

During the same take-off phase, point P, and P, , as shown in states (e¢) and (f) in figure. 1, are

selected as the boundary conditions of the landing buffer phase, and the trajectory of the landing
buffer is planned. The compliance control is used to achieve the buffering, and the impact of the
ground force on the legs when the bounce is dropped is reduced.

A. Landing start point P,

When the legs first started to land, the leg length was the leg length when taking off the ground.
Assuming there is no loss, the speed of the landing and the speed of the ground are the same, the
directions are opposite, and the acceleration is gravity acceleration.
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h=h,
v=-V
@8 (6)

B. Landing end point P,

The landing end point is the starting point of the take-off phase, and the leg length is the initial leg
length, which is the default height before take-off.

hO

Q< =
Il

0
0

(7

In the same take-off phase, the trajectory of landing buffer is planned using the minimized jerk
index.

3. One-legged compliance control
In the process of one-legged bouncing, the rigid contact between the foot end and the ground will
produce a large impact force. The impact force will not only affect the mechanical structure of the legs
but also affect the stability of the robot. Since passive flexible elements are not added to the legs,
active compliance control is essential.

In this paper, joint hybrid position and force control is applied at the joint level, and impedance
control is applied to one leg.

b

3.1. Joint hybrid position and force control
Hybrid position and force control, respectively constructing a force control loop and a position control
loop, and combining the output torques of the two as the final output control torque.

Most of the force control loops directly output the desired torque. The motor response may appear
after the phenomenon, and the deviation signal of the actual torque and the desire torque of the joint
motor is introduced to quickly eliminate the torque deviation. The output torque of the force control
loop is:

T, =17,+k, (1-17,)

®)

Wherein, z, is the control torque output by the force control loop, z is the actual output torque of

f
the motor, 7, is the desire joint torque, and &, is the proportionality factor.

The output according to the position control is determined by the actual angle and the desire
angular deviation of the actual output and the current speed (position differential).

Tq = kpq (qa - qd) - kdqq.a (9)

Wherein, 7, is the control torque output by the position control loop, ¢, is the actual angle of the
joint, ¢, is the desired angle of the joint, 4, is the actual velocity of the joint, &, is the stiffness of the
joint system, and &, is the joint system damping.

The actual output control torque is:

z-Zz—f_H-q (10)

The principle block diagram of the force-bit hybrid control is as follows:
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vy

Actuator

kaq |<——| differential |<7

qa

Figure 2. the principle block diagram of the force-bit hybrid control.

3.2. One-legged impedance control.
In the previous section, the motion trajectory of a one-legged bounce was planned, and the desire foot
end trajectory can be obtained.

First, the desire position g, of each joint can be calculated from the desire foot end position P,
through inverse kinematics; Secondly, a one-legged is virtualized as a spring damper, and the virtual
end of the foot is generated by the deviation of the end of the foot ( P, — P, ), the current speed v of the
foot, and the gravity feedforward mg , and calculated by the one-legged Jacobi matrix J to obtain the
expectations of each joint Moment. After that, the desired torque and the desired position of the joint
are sent to the joint motor for execution. Finally, the actual foot position is calculated from the actual
position of the shutdown by the positive kinematics of the one-legged. The Jacobian matrix of the legs
is calculated. The control block diagram is shown in figure 3.

The virtual toe force F is

F:kp(F’a—F’d)+kdv+mg (11)

Wherein, &, is the stiffness of the joint system, £, is the damping joints.

o | Inverse - Joint torque
7| kinematics i .
Gravity Joint h?’b“d _ — P,
feedforward position | Joint angle > Positive >
and force kinematics
k Jacobian - control Joint angular velocity
’ matrix o
P, _
Jacobian
k; |- .
matrix

Figure 3. Impedance Control Based on Foot Position Planning.

4. Simulation
This paper studies the one-legged bounce control of a foot-type robot, and proposes a one-legged
bounce control strategy and a compliant control method for the legs. In order to verify the control
strategy, a one-leg simulation model of a four-legged robot was first built in the multi-body dynamics
system Vortex, and then the one-leg bounce control was performed to verify the effect of active
compliance control.

The one-legged simulation model is established as shown in figure 4 below. The fuselage is locked
in the x and y directions, and only the z-direction control is performed, that is, the control in the height
direction of the fuselage.



The 2020 Spring International Conference on Defence Technology

IOP Publishing
Journal of Physics: Conference Series

1507 (2020) 052012 doi:10.1088/1742-6596/1507/5/052012

The one-legged simulation model is established as shown in figure 4 below. The fuselage is locked
in the x and y directions, and only the z-direction control is performed, that is, the control in the height
direction of the fuselage. The four-legged robot has a three-joint configuration, which locks when one

leg is bouncing, and only the hip joint and knee joint move. Joint motion is driven by a motor model,
which simulates the motion performance of a real motor.

Figure 4.The one-legged simulation model.

During the one-legged bounce control, the position and moment information of each joint, as well
as the centroid position, speed, and acceleration of the one-legged model, were recorded every 0.005s
to verify the control strategies proposed in the previous two sections.

4.1. Active compliance control strategy verification
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(a) Hip torque closed-loop curve (b) Knee torque closed-loop curve
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(c) Hip angle closed-loop curve (d) Knee angle closed-loop curve
Figure 5.Closed-loop curve of torque and angle of each joint.
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In figures 5, all graphs show joint positions and moments during a one-legged bounce simulation. The
hip joint and knee joint are tracked according to the desired position and force. As can be seen from
the figure, the joint force position control of the joint is better, and the position and force tracking is
more accurate. The force control can track the desire force in time, while the position tracking shows
some lag, but it has little effect on the stability of the whole one-legged bounce. During the bouncing
process, the moment of the knee joint has reached 680N * m, and the moment of the knee joint is
significantly greater than the moment of the forward pendulum joint during contact.

In the landing buffer phase, the compliance control strategy is obviously effective, the ground
impact force is significantly reduced, the joint torque output is reduced rapidly, and the force control
effect is obvious.

4.2. Verification of One-Legged Bounce Strategy

All graphs in figure 6 show the position, velocity, and acceleration of the center of mass during the
one-legged bounce. The trajectory is planned by minimizing the Jerk index as the objective function
and the constraints of each stage in the bounce process. The one-legged bounce went through three
stages of compression take-off, flying, and landing buffer.
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Figure 6.Centroid position, velocity, and acceleration with continuous bounce of one leg.

It is obvious that the state of each stage can be switched. In the initial state of take-off, the height of
the fuselage from the ground is 0.68m; when the energy is compressed and stored, the height of the
fuselage and the ground is 0.46m; when it is off the ground, the leg length is 0.9m and the speed is 2m
/'s. At this time, the foot end trajectory is not planned for the vacated segment. The speed of the flying
phase remains unchanged in the data in the figure because the trajectory of the flying phase is not
planned, the state before leaving the ground is maintained, and the airframe does not perform other
controls. However, in practice, the acceleration of gravity decreases to the highest bounce, and then
increases to the speed above the ground. This is not shown in the figure, and it is hereby explained.
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—— Desire foot position
Actual foot position

Position/m
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Figure 7. Foot position curve with continuous bounce of one leg.

Figure 7 shows that the foot position follows well, the bounce strategy is effective, and the
continuous bounce is also very regular.

5. Conclusion

This article takes a four-legged robot's one-leg system as the research object, and studies the one-leg
bounce strategy and compliance control during the bounce process. The one-leg bounce phase is
divided into three phases: the take-off phase, the vacant phase, and the buffer phase. The jerk index
was used to plan the trajectory of the centroid, and the bounce trajectory planning problem was
transformed into a quadratic optimal planning problem. During the robot's foot-to-ground contact, the
impedance control with gravity feedforward is used to fully reduce the damage of the ground impact
force to the robot and improve the flexibility and stability of the robot. The joint layer adopts force-
position hybrid control, and the force control loop adds torque deviation compensation to make the
actual torque of the joint quickly follow the desire torque; the position control loop uses the impedance
control model to build the control loop of the joint, so that the joint has good compliance performance.
A one-leg simulation model of a four-legged robot was built on the multi-body dynamics system
Vortex. The one-leg bounce strategy and compliance control were simulated and verified. The results
show that the control method can control one-leg bounce and has good compliance.
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