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Abstract. The joints of traditional foot robots are generally designed as power-driven
articulated rotary motion, but this design has some problems such as poor flexibility and
adaptability. To optimize joints, this paper selected the African ostrich intertarsal joint which
could move at high speed in complex terrain as a biomimetic prototype. Based on the motion
acquisition and reverse engineering three-dimensional reconstruction of the intertarsal joint, a
rope-driven spherical sub-bionic joint was designed. The angle curves of the bionic joints
under different ground conditions were obtained through the hard ground and the motion tests
of three different softness sands (medium with different particle sizes). Results showed that the
proportion of the vacant period was 35%, 49%, 62% and 63% when the bionic joint moved on
the hard ground and three soft grounds (the particle size particles are arranged from large to
small),. The range of variation gradually becomes larger, similar to the variation trend of the
intertarsal joint during ostrich locomotion. The bionic joint was able to absorb joint impact
through the relative slippage of the joint surface and expansion/contraction of the rope, and
maintain flexibility when passing through different degrees of softness.

1. Introduction
Foot-based robots are becoming more and more complicated due to their good adaptability to soft and
hard ground. However, foot robots have discrete gait characteristics, which cause the body to collide
with the ground continuously, making the joint movement non-compliant. At present, most foot robots
simplify the muscle and tendon-driven spherical sub-joints into electric motors and hydraulically
driven articulated joints. Due to the obvious difference in joint stiffness between the vacating period
and the swinging period, the ground reaction force at the moment of touching the ground will have a
greater impact on the joint. The impact load will also deviate from the sagittal plane due to the
uncertainty of the ground environment and the attitude of the ground contact. where the 2D plane is
located.

Therefore, simplifying the joint into an articulated rotational motion reduces the flexibility of the
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joint, causing problems such as joint wear and body instability. Domestic and foreign scholars usually
use the machine electric hydraulic system and variable stiffness adaptive control design method to
solve the discrete gait and maintain the flexibility of the joint. The Cassie robot acquires the real-time
state of the joint through the position sensor at each joint, thereby improving the robustness during
walking [1]. The BigDog robot generates a gait coordination algorithm through the three-dimensional
force sensor of the leg through the processor to generate a gait coordination algorithm, and then feeds
back to the leg to achieve a sTable gait [2, 3]. HyQ is equipped with a hydraulic servo system and
control system at the joints of the legs. It is controlled by hydraulic and motor hybrid drive to achieve
a variety of gait movements [4-6]. Cheetah is directly driven by the motor through the small reduction
ratio reducer at the joint to directly control the joint torque through the motor current to maintain the
stability of walking [7-9]. The DURUS robot uses an energy-efficient deceleration mechanism to
directly control the torque of the leg joints through a torque motor, while optimizing the gait [10].
Some research institutes in China developed four-legged robot used hydraulic or hydraulic driving at
the joints, which is characterized by fast response and high precision [11-32].

In addition, the variable stiffness adaptive method has certain help to the discrete gait. A cam disc
roller variable stiffness joint with compact structure, high energy density and high robustness was
designed. The variable stiffness joint adjusts the position of the stiffness motor to adjust the preload of
the floating spring and the relative position of the cam disc roller structure to achieve joint stiffness
variation [33, 34]. A variable stiffness joint that automatically adjusts the pre-tightening stiffness of the
joint by combining an axially floating spring unit with a free system called BLAPS was designed [35].
A variable stiffness drive actuator based on a four-bar mechanism was designed. The device is
composed of a ring inner ring frame and an outer ring frame and a deformed elastic element. The outer
ring is rigidly connected with the output link. The inner ring is rigidly connected with the input shaft.
The variable stiffness elastic element is actually a hinged joint for a small connection with a deformed
four-bar mechanism. Joint stiffness and position can be independently controlled. The structure is very
compact, small in size, easy to assemble and robot joints [36]. A new type of nonlinear elastic actuator
(ANLES) was proposed using a torsion spring wound around a guide bar with a curved profile to
produce a nonlinear relationship between angle and torque [37]. A variable stiffness device using a
planar prismatic torsion spring was designed. The device is pre-tensioned by a polygonal torsion
spring to change the rigidity of the device, and has a large rigidity adjustment range and a compact
structure [38]. Machine electrical hydraulic system and variable stiffness adaptive control design can
improve collision safety, but the way to improve joint performance is often accompanied by complex
control strategies and structural design [39].

After a long period of natural evolution, the organism has a perfect physiological structure and
movement mechanism, which can adapt well to the complex and changing natural environment.
Inspired by nature, it has always been the dream of engineers to develop a soft, safe and efficient
bionic joint that rivals biological biology through research on biological joints [39].

The African ostrich has excellent athletic ability and is the largest biped in the world with the
fastest weight [40,41]. The ostrich's intertarsal joint is located in the middle of the leg. There is no
muscle wrap around the joint, it relies solely on the flexor and extensor tendons to provide power, and
the medial and lateral ligaments and joint surfaces provide stability. This special biostructure assembly
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can satisfy the high speed and maneuvering motor function of the ostrich [42]. Rubenson J et al.
combined with gross anatomy to establish a 5-segment 17-degree-of-freedom kinematics model of the
ostrich hind limbs, and determined that the rotational axis of the intertarsal joint was rotated 21°
relative to the sagittal plane for non-sagittal motion [43]. Schaller N U et al. found that the ostrich
intertarsal joint interacted with the joint surface of the ligament. When the joint crossed about 115°,
the joint would rapidly expand and contract, and the passive rebound mechanism could save exercise
energy [44]. At present, the research on bionic joints mostly through the abstract extraction of
physiological structure, often lack of combination with joint motion analysis. Therefore, based on the
motion parameters and physiological structure of the ostrich intertarsal joint, combined with the
excellent movement and adaptation characteristics of the joint in different ground environments, a
rope-driven adaptive bionic joint with flexible characteristics is designed by engineering bionics.

2. Materials and method

2.1. Ostrich intertarsal joint kinematics

2.1.1. Experimental object and device. The study was an 8-month-old Asian adult female ostrich with
a height of about 180 cm and a body weight of about 83 kg. It was from a large ostrich farm in Ji'an,
Jilin Province of China. The ostrich was selected as a test object for the study of ostrich movement
mechanism. In order to ensure that the ostrich adapts to the test site and obeys the tester's instructions,
the ostrich is trained for half a month before the start of the test, and the soft ground and hard ground
sports training is performed every morning and afternoon. Perform 20 round-trip runs with appropriate
rest and eating in the middle. The field test equipment is shown in table 1.

Table 1. Field test equipment.

Name Function
Three high speed cameras (CASIO EX-FH25) Simultaneous video

3d calibration framework Calibration of test site

Mark points
Marks a specific point in the location

to be studied
Flash (JY181B) Sync release

Light source (FCCE) Add light intensity
RSscan International Pressure plate
（2.096 m*0.472 m*0.025 m）

Plantar pressure collection

2.1.2. Regression equation Acquisition process. Set up the collection area (1.4 m * 4 m), the upper
part is covered with a black shade net to avoid daytime test under strong light. There are 38 meters
long and 2 meters wide running and rest areas on both sides. The three areas have a 1.5 m high fence.
The non-slip rubber is arranged above the pressure plate, the marble plate is arranged below, and the
pressure plate is embedded in the hard ground. The specific test site layout is shown in figure 1.
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Figure 1. Experimental field layout.

The marker points are attached to the distal tibiotarsus of the right foot of the ostrich, the proximal
tarsometatarsus and the intertarsal joint, as shown in figure 2. Set the camera sampling frequency to
120 fps uniformly. The calibration frame is placed in the middle of the pressure plate and the space
coordinate system is calibrated. Drive the ostrich at different speeds so that the ostrich passes straight
through the test collection area while walking or running. When the ostrich moves to the vicinity of
the test collection area, turn on the flash to give a high-brightness exposure moment in the camera's
view. Among them, when measuring the movement data of the ostrich on the soft ground, the loose
sand with a height of 0.04 m is evenly arranged above the non-slip rubber. The pressure plate is
calibrated before each test to ensure accurate data. After each data sampling is finished, check whether
all data is abnormal. If there is an abnormality, the test is restarted.

Figure 2. Location of leg marker.

2.2. Design of bionic joint system
Taking the intertarsal joint as a biomimetic prototype, based on the engineering bionic technique, the
medical image data of the intertarsal joint model was extracted from the nuclear magnetic scan image
(CT) of the ostrich by the medical image control system software, and the intertarsal joint was used by
the reverse engineering software. After the operation of noise reduction, smoothing, etc., a
three-dimensional model of the intertarsal joint was obtained. Based on this, a three-dimensional
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mapping software was used to design the rope-driven bionic joint. The bionic joint is mainly divided
into two parts: the spherical sub-engagement joint, Bionic joint drive system.

2.2.1. Design of spherical pair engaged joint. Based on the existing study on the general anatomy of
the intertarsal joint of ostrich [44], the lateral articular fossa of the tarsometatarsus lateral joint and the
lateral tarsometatarsus metatarsal bone were parallel to the sagittal plane, the medial tibiotarsus
articular head and tarsal metatarsal medial articular fossa presented an angle of 15° medial to the
sagittal plane, and the joints exhibited non-sagittal motion. At the same time, triangular sesamoid bone
is present in the posterior tibiotarsus, which prevents hyperextension of the joint. In addition, there is
cartilage tissue on the bone surface of the ostrich intertarsal joint, which can absorb impact through
deformation, and maintain the joint flexibility when the ostrich intertarsal joint moves, in accordance
with the cooperative system formed by fascia, medial and lateral ligaments and anterior and posterior
ligaments at the joint, as shown in figure 3b.

a. Comparison between the rigid parts
of the bionic joint and those of the

intertarsal joint in ostrich.

b. Comparison between the flexible parts of the bionic
joint and those of intertarsal joint in ostrich [44].

Figure 3. Bionic joint based on ostrich tarsal joint.

The internal joint head and the internal socket of the bionic joint are at an angle of 15° to the
sagittal plane of the joint by bionic engineering. There is a cushion between the joint head and the
socket to simulate soft tissue action. There is a double spring cushion seat at the joint of the lower rod,
together with the cushioning slider, and a triangular sesamoid model with a ratcheting simulation at the
rear end of the joint head of the upper rod constitutes a synergistic system to prevent the joint from
overstretching, as shown in figure 3a.

2.2.2. Drive system. The tendon drive of the ostrich intertarsal joint is simplified to the rope drive
under the motor. Since the rope can only withstand the tension and can not withstand the pressure, the
rope-driven robot must be driven by redundancy, that is, at least n+1 ropes can be used to drive n
degrees of freedom [45]. In order to achieve rotational freedom in the sagittal plane, it is necessary to
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cooperate with the two drive units of the curved rope and the extension cord. At the same time, the
joint rotation angle must correspond to the motor rotation angle.

a. 3d model with drive system. b. Joint driven simplified model.
Figure 4. Joint driven model.

As shown in figure 4a, A 3d model of the rope drive of joints can be obtained by simplifying the
driving simplified model in figure 4b. In the simplified model, a, b are the calculated torso lengths and
c is the length of the drive rope. As can be seen from the figure 4b, the arc length of the steering wheel
rotation is equal to the length of the rope change. Combine the cosine formula and the arc length
formula to get the formula 1.

a2+b2-2ab cos θ2- a2+b2-2ab cos θ1=r·Δα (1)

Where,
θ2 is the angle of the joint after the change,
θ1 is the angle of the joint before the change,
Δα is the angle at which the motor steering wheel changes,
θ、α is radians.
The size of the graphic can be obtained by substituting,

23590-19339.6 cos θ2- 23590-19339.6 cos θ1=18·Δα (2)

Let x=cosθ，y=α can get the equation,

Δy= 1
18 ·( 23590-19339.6x2- 23590-19339.6x1) (3)

Obtain an equation by indefinite integral of y and x,

y= 1
522169.2 ·(23590-19339.6x)

3
2+C (4)

From the initial condition x=0.872159，y=0 gives C=-0.07747. At the same time, y=α、x=cosθ are
substituted into the equation, and finally the relationship between the joint angle and the angle of
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rotation of the motor can be obtained.

α= 1
522169.2 ·(23590-19339.6 cos θ )

3
2-0.07747 (5)

2.3. Design of bionic joint system
Three mediums with different particle sizes were selected as the soft ground environment for the test,
and the bottom of the test bench was used as a hard ground environment. Place the bionic joint on the
test bench for exercise testing.

2.3.1. Media mechanicals parameters. The particle size distribution of the medium was quantitatively
analyzed by BT-9300ST laser particle size distribution analyzer. The results are shown in figure 5.

Figure 5.Media particle size distribution.

The particle size of the medium 1 is concentrated at 0.63-1.6 mm, and the particle size is the
coarsest, granular, and the medium hardness is the highest. The medium 2 has a particle diameter of
0.63-0.06 mm, and the particle diameter is between the medium 1 and the medium 3 particle diameter,
and the particle powder is mixed, and the hardness is second. The medium 3 has a particle size of
between 0.15 and 0.06 mm and has the finest particle size and is in the form of a powder. The medium
has the lowest hardness.

2.3.2. Experimental equipments. The test bench has a specification of 150 mm*40 mm*40 mm, and
has an adjustable height platform on both sides to fix the linear slide (radius 10 mm, length 200 mm).
The test background was occluded with a blue cloth, and the motion of the structure was captured by
two high-speed cameras. The test site layout is shown in figure 6.
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Figure 6. Filed layout.

2.3.3. Steering gear parameters. The motion of the joint adopts the position control method, that is,
the adjustment of the joint state is realized by the change of the position at different moments. In order
to achieve the timeliness of the joint response and the required torque, the test is to select the
DS3218mg dsservo steering gear. The specific parameters of the steering gear are shown in table 2.

Table 2. Specific parameters of dasheng steering gear.

rated voltage 5V rated current 1.8 A

mass 0.06 kg Dead zone set 3 ms

size 40*20*47.5 mm orange line Single

working temperature 55℃ red line Vcc

Operating angle range 180° brown line Gnd

speed 60°/0.16 s torque 200 N*cm

rated voltage 5 V rated current 1.8A

2.3.4. Working condition and process. The test consisted of a structure consisting of a bionic joint
through a frame and a linear slide. Mark points 1, 2, and 3 are selected on the joint member, the joint
rotation center, and the lower member, as shown in figure 7a, b. The test is divided into four working
conditions: the bottom of the test bench is not laid with medium (hard ground environment), and the
three media are evenly laid on the bottom of the test bench with the specifications of length, width and
height of 50mm*40mm*5mm (three kinds of soft ground environment), from left to right, medium 1,
medium 2, and medium 3.

Three successful trials were taken for each condition. Before the start of the working condition test,
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calibration is carried out through the calibration frame.

a.Motion drives the steering gear. b.Mark point.
Figure 7.Motion-driven steering gear and joint marking points.

3. Result

3.1. Ostrich locomotion experimental results
The two-dimensional/three-dimensional motion image capture system analysis software Simi motion
was used to analyze the motion image of a gait cycle of the ostrich's intertarsal joint, the intertarsal
joint motion feature points were picked frame by frame, as shown in figure 8.

Figure 8.Motion capture of the intertarsal joint of ostrich.

After obtaining the raw data of the tibiotarsus marker point S, the joint marker point J, and the
tibiotarsus marker point T space, the smoothing process is respectively performed, and finally a
three-dimensional motion stick diagram of a gait cycle of intertarsal joint is obtained, as shown in
figure 9.
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Figure 9. Ostrich skeletal joint movement stick diagram.

The Simi Motion software was used to track the angle of the intertarsal joint in real time, and the
joint angle of a gait cycle in the running/walking gait of the soft ground and the hard ground was
extracted, and each working condition was recorded three times. The gait cycle is percent, as shown in
figure 10.

Figure 10. Curve of the angle of
the intertarsal joint during the
ostrich exercise test (the vacancy
is greater than 50% for the
running state, and vice versa for
the walking gait).

The ostriches took 31.14% and 24.94% of the vacant period when they walked through the soft and
hard ground. The percentage of the vacant period when they walked through the soft and hard ground
was 57.88% and 51.62%.
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3.2. Bionic joint experimental results

Through the high-speed camera system, the joint angle of the joint on the hard ground, medium 1
(white), medium 2 (red), medium 3 (black) is tracked, and the joint angle of the bionic joint can be
obtained by Simi Motion software extraction. The curve of variation is shown in figure 11.

Figure 11. Bionic joint angle curve.

Based on the bionic joint motion test data, the joint angle varies from 100 to 135°, and the joint
vacancy period is 35%, 49%, 62%, and 63%, respectively. Correspondingly, the joint angle varies
from 121 to 132°, 126-135°, 125-133° and 127-132° during the vacant period.

4. Discussion
Existing studies established a 17-degree-of-freedom kinematics model of 5 segments of ostrich hind
limbs and obtained the angle changes of each joint of ostrich at the speed of 3.3m/s, so as to determine
the actual rotation center and rotation axis of joint motion, proving that the joint motion of ostrich's
metatarsal bone was not limited to two-dimensional plane but three-dimensional [43]. On the one hand,
the interaction between the ligaments of the intertarsal joints and the joint surface is equivalent to the
“engagement-disengagement” of the motion process. This structure can effectively maintain the
stability of the joints and maintain the flexibility of the joint movement through the passive rebound
mechanism [44]. On the other hand, flexibility is also reflected in the soft tissue of the tendon and
ligament of the anterior and internal and external joints of the joint [42]. Therefore, the abstract
extraction of factors such as tendon, ligament and joint morphology is important for the flexibility of
joints.

When the ostrich is running, the hard ground has obvious angular fluctuations compared with the
soft ground, which is about 9°, the proportion of the patency period of the intertarsal joint increases as
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the degree of softness of the ground increases. In addition, while the peak of the change in the walking
gait is not obvious. We speculat that the ostrich are slower in walking, have smaller stride, and cannot
fully flex or extend their joints. Based on the results of bionic joint exercise data, the proportion of
joint vacancy period increases with the increase of the degree of softness of the ground, and the range
of joint angle also shows an increasing trend. In other words, the greater the ground hardness, the more
pronounced the impact on the joint. The bionic joints we designed can maintain flexibility when they
pass through different degrees of softness, And there is no significant difference between the trend of
the vacant period and the ostrich's exercise test.

The use of rope drive can reduce the moment of inertia, can achieve a large movement space, while
occupying a small space, light weight, and play a very good flexibility [45, 46]. In the process of the
front and rear squats of the bionic joints driving the bionic joints forward, the ground reaction force
forms a torque at the joints to drive the joints to bend, but the front and rear drive ropes are in a tight
state to maintain the flexibility of the joints, and maintaining joint stability, combined with a soft
ground environment, can cause the entire leg to sink and have a tendency to return the joint to a
stretched state. Therefore, the angle of the joint of the soft ground environment in a harder ground
environment will be smaller. On the other hand, since the hard ground leg does not sink relative to the
center of gravity, the steering gear is required to drive the rope to extend the joint, and the completion
of the kicking action of the leg requires the center of gravity of the mechanism to be raised, thus
requiring more energy. Therefore, under the condition that the output torque of the joint-driven
steering gear is the same, the hard ground has a smaller proportion of the soft ground vacancy period.

Considering the choice of steering gear for bionic joints, this paper only selected a speed. There are
still many aspects of work in the future. On the one hand, there is a lack of quantitative analysis of the
arrangement of the medial and lateral ligaments of the bionic joints, the stiffness of the elastic
elements, and the selection of soft tissue materials for the joint surfaces. On the other hand, the drive
rope lacks a tensioning structure, which causes slack after a period of motion and requires further
optimization.

5. Conclusion
The adaptive bionic joint base on the flexibility feature of ostrich intertarsal joint refers to biological
physiological structure and motion parameters: special mesh morphology, elastic element simulation
ligament, and bionic design with buffer pad and sesamoid bone. The combination of structure and
motion analysis breaks the traditional joint assembly mode and provides a new idea for joint design
optimization of foot robots.

Based on the ostrich exercise test and the biomimetic joint test data, the biomimetic joints can
maintain flexibility when passing through the environment of different degree of softness, and there is
no obvious difference between the trend of the proportion of flying period and the ostrich exercise test,
which verifies the rationality of the biomimetic joint design.
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