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Abstract. Analysis of the different stationary states of a boundary driven Frenkel-Kontorova
Model and the associated sine-Gordon equation shows the existence a new regime that can be
represented by a kink (fluxon) motion back and forth in the restricted geometry. This dynamics
is produced by driving the system at one end at a given frequency. As a consequence our result
suggests the conception of a device which could switch to the conducting regime not according to
intensity range but rather to given (quantized) frequency range. Moreover our findings indicate
also a frequency converting scenario by choosing appropriately the system length and injected
fluxon number.

A short Josephson junction has a simple interpretation in terms of a mechanical pendulum
(see e.g. [1]), and a chain of Josephson junctions connected in parallel (or a long Josephson
junction transmission line) is effectively described by a Frenkel-Kontorova model (or its continuos
analogue the sine-Gordon model) [2, 3]. At the same time these models have a simple
experimental counterpart, namely the chain of linearly coupled pendula [3] which offers an
interesting opportunity to easily visualize all the main nonlinear characteristics of the sine-
Gordon system. On the other hand, this simple laboratory tool allows to observe novel effects
[4, 5, 6, 7] which may then apply in completely different physical situations.

As a matter of fact, a recent experimental discovery of supratransmission effect in the pendula
chain [8] has led to the study of similar phenomena in optical Bragg gratings [9], Josephson
Junction transmission line [10], waveguide arrays [11, 12]. By this approach, many similar
phenomena observed in the same systems [13, 14, 15, 16, 17] have been identified as effects of
nonlinear bistability. Moreover it allowed us to predict the existence of bistable magnetization
profiles in magnetic films [18] and to suggest ultrasensitive detectors (or digital amplifyers) in
optical waveguides [19] quantum Hall bilayers [20] and Josephson junction parallel arrays [21].

We report here the discovery of a stationary state which can be qualitatively understood as
the motion back and forth of a kink-like structure (some analogy of the fluxon in long Josephson
junctions) in the pendula chain. The new stationary regime appears to be completely different
from the two cases considered earlier e.g. in [18, 19, 20, 21, 22]. Such a dynamics creates a new
frequency in the system and furnishes a tool to divide the input frequency by odd fractions (we
shall illustrate chain end oscillations with frequency Ω/3 where Ω is the driver frequency).

Let us consider a one dimensional array of N short Josephson junctions coupled through
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Figure 1. Scheme of a parallel array of Josephson junctions (left) and its mechanical
counterpart: the linearly coupled pendula chain (right).

super-conducting wires as represented by figure 1. It obeys the following model [3]

ü1 + γ0u̇1 − λ2
J [u2 − u1] + sin u1 = Is(t), (1)

üN + γu̇N − λ2
J [uN−1 − uN ] + sin uN = 0,

ün + γu̇n − λ2
J [un+1 + un−1 − 2un] + sinun = 0, (2)

where n = 2, · · · , N number underdamped Josephson junctions , while the first junction is
considered to be overdamped with a large damping parameter γ0. The injected current Is(t) is
normalized to the Josephson critical current Ic in the single junction. The time is normalized
to the inverse plasma frequency ωp = 1/

√
LJC, C stands for the junction capacitance and

LJ = h̄/(2eIc) is the Josephson inductance. The parameter λJ is defined by λ2
J = LJ/LS

where LS is the inductance representing by the superconducting wires connecting the junctions.
γ0 =

√
h̄/(2eIcR2

0C) is a damping parameter for overdamped first junction (R0 is its resistance)

and γ =
√

h̄/(2eIcR
2
1C) represents damping constant of other junctions with resistance R1. For

our numerical simulations we choose λJ = 2 and γ = 0.02.
The first junction being overdamped (γ0 � γ), one may neglect in (1) all left-hand side terms

except γ0u̇1. Consequently with a sinusoidal injected current Is(t) = b sin(Ωt) this means that
we control the function u1 ∼ cos(Ωt). Thus the dynamics of parallel array of Josephson junctions
is effectively described by the Frenkel-Kontorova model [2] with applied boundary conditions:

ün + δu̇n − σ2 (un+1 + un−1 − 2un) + ω2
0 sin un = 0, u0(t) = b cos(Ωt), uN+1 = uN (3)

which is the model of linearly coupled pendula where the variable un is the angular deviation of
the nth pendulum, ω0 is the eigenfrequency of a single pendulum and σ is proportional to the
linear torsion constant of the spring.

Our experiments on the pendula chain [23] correspond to ω0 = 15.1Hz, σ = 32.4Hz. The
damping coefficient δ is phenomenological, it has been evaluated approximately δ = 0.02ω0. The
experiments consist in driving the short chain pictured in Fig. 1 with a frequency in the forbidden
band gap (Ω < ω0), which actually does not excite linear modes. Without external perturbation
the system locks to a periodic solution with low output amplitude uN (t). Depending on the value
of an external kick one makes the system bifurcate to different stationary state. Introducing
dimensionless time variable t → t/ω0 on sees that the effective parameters of the pendula chain
are very close to those of parallel array of Josephson junctions (1), (2) for which we now perform
numerical simulations.

To develop an analytical description of the process, let us consider the continuous
approximation of eq.(3) by substitutions t → ω0t, n = ω0x/σ. Neglecting dissipation we obtain

25th International Conference on Low Temperature Physics (LT25) IOP Publishing
Journal of Physics: Conference Series 150 (2009) 022035 doi:10.1088/1742-6596/150/2/022035

2



0 1 2 3 4 5 6
0

1

2

3

4

5

6

Input Amplitude  |u
0
(t)|

max
   (rad)

O
ut

pu
t  

A
m

pl
itu

de
 |u

N
(t

)|
m

ax
  (

ra
d)

o

o

Ω=0.9ω
0

1

2
Ω=0.3ω

0

II
III

I

0 2 4
2

4
6

8

0
0.05

0.1

P
en

du
lu

m
 N

um
be

r

E
ne

rg
y

0 2 4

−5

0

5

D
is

pl
ac

em
en

t 
A

ng
le

 (
ra

d)
  

Time (sec)

Time (sec)

u
8
(t)

u
0
(t)

1)

0 2 4
2
4
6
8

0
20
40

P
en

du
lu

m
 N

um
be

r

E
ne

rg
y

0 2 4

−5

0

5

D
is

pl
ac

em
en

t 
A

ng
le

 (
ra

d)
  

Time (sec)

Time (sec)

u
8
(t)

u
0
(t)

2)

Figure 2. Left: Analytic input-output amplitude dependences for different oscillation
frequencies of stationary states given by formulas (6). The two lines correspond to frequency
0.9ω0 and 0.3ω0 as indicated in the graph. The intersections of the vertical line with the curves
correspond to the different regimes for the single driving amplitude |u0(t)|max = 0.5 rad. All
intersections except point 2 represent the situations when the whole chain oscillates with the
driving amplitude 0.9ω0 but with different output amplitudes. The point 3 corresponds to the
driving frequency 0.3ω0 and describes kink motion forth and back. As the experiments and
numerical simulations show (and this is a main finding of the paper), the latter regime can also
be reached with a driving frequency 0.9ω0, three times larger than the one actually used for the
analytic solution used in the plot. Two other plots describe numerical simulations on the model
(1), (2 with a damping constant γ = 0.02 and 8 junctions. The time evolution of junctions
energy and input-output oscillations are displayed corresponding to the points 1) and 2). The
driving amplitude is |u0(t)|max = 0.5 rad and its frequency Ω = 0.9 for both cases. This results
in the same output frequency oscillations Ω in graph 1) but Ω/3 output oscillations in graph 2).
Dashed lines display analytical curves obtained from (6).

the sine-Gordon equation
x ∈ [0, L] : utt − uxx + sin u = 0, (4)

where L = Nσ/ω0. The mixed Dirichlet and Neumann Boundary Conditions u(0, t) = b sin(Ωt)
(driven boundary), ux(L, t) = 0 (free end boundary) allows to seek the following periodic
stationary solutions [22]

u(x, t) = 4 arctan

[√∣∣∣∣rsb
∣∣∣∣X (x)T (t)

]
, (5)

where one has three choices (cn, sn and dn are the standard Jacobi elliptic functions)

(I) X = cn(β(x − L), μ), T = cn(ωt, ν),
(II) X = dn(β(x − L), μ), T = sn(ωt, ν), (6)

(III) X = dn(β(x − L) + K(μ), μ), T = sn(ωt, ν).

Here K(μ) stands for a complete elliptic integral of the first kind of modulus μ. These
families of solutions are parametrized by the two free constants ω and ν ∈ [0, 1], then for
solutions of type (I) the remaining parameters are given by b = ω4ν2(1 − ν2), s = ω2ν2,
2r = 1−ω2+2ω2ν2+

√
(1 − ω2)2 + 4ω2ν2, β2 = (b+r2)/r, μ2 = r2/(b+r2). While in both cases

(II) and (III) they read b = ω4ν2, s = −ω2ν2, 2r = 1−ω2(1+ν2)+
√

[1 − ω2(1 + ν2)]2 − 4ω4ν2,
β2 = r, μ2 = 1 − (b/r2). Note that r should be real valued and positive which may restrict the
allowed values of ω.

Since the experiments show that the frequency Ω/3 can also be excited (if one puts initially
large energy in the chain), we assume that the period of the time dependent part T (t) of
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the stationary solutions (6) coincide with an odd integer fractions of the driving frequency Ω.
Recalling that the period of T (t) is 4K(ν)/ω we require thus ω = 2ΩK(ν)/(mπ), where m
is an odd integer. For a given value of the parameter ν ∈ [0, 1], the above relation fixes the
second parameter ω in terms of the driving frequency Ω. Therefore fixing Ω (driver frequency)
and varying ν one can plot the output amplitude u(N, t) in terms of the input u(0, t) from the
analytic expressions (6). We display this dependence for Ω = 0.9 (in units of ω0) as a the full
line in fig.2 where different colors report to different solutions. We also plot (dashed line) the
output amplitude for a driving frequency Ω = 0.3. Therefore, to the given driver amplitude
maxt |u(0, t)| = 0.5 may correspond stable synchronized states (intersections of vertical line
with the curve corresponding to Ω = 0.9 on the left graph of fig. 1, which has been analyzed
previously [21]) and one more stable state with frequency 0.3 indicated by point 2.

It is then a simple matter to check that the stationary state related to point 2 of the left graph
in fig. 2 corresponds effectively to our numerical simulations, and hence to the experiments of
fig. 1 (see also [23] for the movie file describing the experiment). It is done in fig. 2 where the last
plot shows the result of a numerical simulation (full line) compared with the analytic solution
(dashed line) related to point 2 of left graph in fig. 2. Wa have also plotted the time evolution of
the total energy of each pendulum (middle graph in Fig. 2) in that stationary state and compare
its behavior with one of the early examined stationary state which is fully synchronized with
driver (right graph in Fig. 2). Thus we have actually demonstrated the possibility of conceiving
a frequency divider with which the driving frequency can be divided by factor 3.

We thank D. Chevriaux for the production of the movie on the pendula chain. R.
Kh. acknowledges financial support of the Georgian National Science Foundation (Grant No
GNSF/STO7/4-197).
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