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Abstract. Using the fast expansion method, we obtained several exact solutions of the
boundary value problem for the Poisson equation in a rectangular domain. We have given
graphs of exact solutions corresponding to different boundary conditions and different types of
the Poisson equation free term. We showed the influence of the type of boundary conditions
and the right-hand side on the type of exact solution. We obtained a solution to the problem of
membrane deflections under the action of variable load. We have given graphs of the stress
components, from the analysis of which it follows that the greatest stress is in the middle of the
rectangular membrane long sides.

1. Introduction

Various methods are used to solve mechanics boundary value problems with the Poisson equation (see
[1-5]). So, in [1] a perturbation method was developed. In [2], the method of special orthonormal
polynomials and the regular asymptotic method of “large A” are used to solve the problem. In [3],
relations of the generalized theory of elasticity are used that contain a structural parameter and allow
one to obtain a regular solution, in [4] Fourier series are used, and in [5] the integral Mellin transform
is used to solve contact problems of elasticity. Works [6—12] are devoted to solving the Poisson
equation using numerical methods. The collocation method was used in [6], the quadrature element
method was used in [7], the modified cubic B-spline differential-quadrature method was used in [8,
10], and the Haar wavelet method was used in [9, 11]. In [12] an analysis of multigrid correction of
defects of compact discretization schemes of solving the Poisson equation is presented. In this paper
some Poisson equation exact solutions will be obtained by the method of fast expansions [13].

2. Materials and methods

We write the Poisson equation for the rectangular domain Q_
62—U+a2—U+F(x,y)=o, (x,y)0Q,, 0sx<a, 0<y<b, (1)
ox* 0y’ :

where F (x, y) is the internal source.

We set the boundary conditions in the form
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U

o =hH(Y): Ul =1 (x). U, = £(y). U|y:b = f,(x). 2)

The solution of the boundary value problem (1), (2) must satisfy the consistency conditions in the
corners of the rectangle:

L0)=£,00), f,(a) = £0), f30)=fi(a), f(b)=f,(0),
U..(0,0)+U, (0,0)+ F(0,0)=0, U, (a,00+U, (a,0)+ F(a,0) =0, 3)
U.(0,b)+U, (0.b)+F(0,b)=0, U, (a,b)+U, (a,b)+F(a,b)=0.

The equations (3) follow from the independence of the function value U (x, y) from the direction of

the approach to these corners.
We represent the function U ( X, y) as the sum of the boundary function and the sine Fourier series,

in which two Fourier coefficients are taken into account
U(xy)=M,(x,y)+ A (y)sin =+ A (y)sin2m=, 0< x<a. )
a a

Here M, (x, y) is the second-order boundary function

M, (x,7)= A (9) B (x) + 4, () £ (x) + A () B (x) + A, () P ()
P](x)=l—§, Pz(x)=§, ﬂ(x):%‘g—a‘a—;c’ (%)

X ax

x)= .
6a 6

Unknowns are functions A, (y) i=1+6 that depend on only one variable y. The functions A, (y)

i =1+6 are also represented by fast sine expansions:
A(y)=Mi(y)+A, sinT%+AL6 sin2T%, i=1+6, 0<y<b, (5)

where M ( y) i =1+6 is the second-order boundary function
M; ()’) =A,R ()’) +A,P ()’) +A P ()’) +ALP ()’)’
2 3 3
—1-2 = Yy by =y by
R(y)=1=2. B(y)=5. R(y) =5 -5 R0) -
Thus, the function U (x, y) is represented in the form of a double fast expansion containing 36
unknown coefficients

A

i,j°

i=1+6, j=1+6. (6)

We define the functions f; (y), 5 (x), £ (y), A (x) included in the boundary conditions (2) as
follows:

L(0)= B (9)+ fiuP (3) * fisP(9) + £4P (3) + fossin TT% + f,¢8in 2“%,
Fr(x) = FuaP (%) * fnPy (%) + fosPo (%) + oo P (%) + fog SINTES + £, 5in 270, (7)
a a

()= FaR (0)* FaB () + FisP (3)* B (5) + fussinTe + £ gsin2me
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fi(%) = FuB () + £iP () + £ P (%) + fouP (%) + fossin T+ Jis sin 21,
a a

where the constants f; pi= 1+4, j=1+6 are known.

We write the internal source F (x, y) in the form a finite sum by analogy with dependencies (4), (5):

F(xy)=EO)R()*+ B O)B )+ RO)R )+ F ()P (x) + F ()sinTe+ By (y)sin2r,
(8)
F(5)= FuR (0)+ FoBy () + E P () 4 FLuP(3) + Fgsin e+ Fsin 2=, i =16,

We consider all coefficients F, i i=1+6, j=1+6in expression (8) for the source to be known,

since the source F (x, y) is a given function.

Thus, it is required to find a solution to equation (1) with a given internal source in the form (8)
that exactly satisfies the boundary conditions (2) and the consistency conditions (3).

To find the unknown coefficients 4, ; from (6), we apply the fast expansion method, according to
which we substitute the double of the fast expansion of the function into boundary conditions (2),

consistency conditions (3), and differential equation (1).
From the boundary conditions (2) we obtain

4
o =5 ()2 2 AP (3)+ AgsinTe + A, sin 2 Zﬁ, B (3)* fssinTe + £ sin2ms

4
Ul =1 (x)= Y A,B(x)+A,sin nf + A, sin 2nf = Z fo P (X)+ fossinTEE + f, ¢ sin 2T,
) p = a a
. )
U.x:a=f3(y)jzA2 ( )+A2581nn_+A2681n2T[__2f3] J +f3551nnb+f;651n2nz
j=l
: X CAlX X CALX
U|y:b =f, (x) = Z AP (x) + Ay, SInTi—+ A, sin 21— = Zf‘tu (x) + fisSINTI—+ f, - sin2T1—.
i=1 a a o a a
The consistency conditions (3) give the following relations
Ju = s foo = fi2 = fans 2 = fass
1,1 2,1 2,2 3,1 3,2 4,2 1,2 4,1 (10)

A3,1 + Al,3 + E,l = 0’ A4,l + A2,3 + FVZ,I = 0’ A3,2 + Al,4 + E,Z = 0’ A4,2 + A2,4 +F

Now we substitute U (x, y) from (4) into differential equation

i[iA P (y)+Asin r% + A, sin 2T%Je" (x)

a

EEZ 5.J ]( )+A5,5Sinﬂ%"'AMSinZT%]sinnﬁ

410
e

a

w2 ()

. Yy y X
ZAG,_,-P,- (y) + Ag s sin TTZ + A ¢ sin ZITZ sin 21—
j=l

4

A P

=1

3| S, 0) - o, 2

J
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S T 410
" . y . y . X
ZAS,]’PJ' (y) — Ay ?sm T[; —As¢ % sin ZTTZJ sin T[;

, L AT Vo X
JPJ.(y)—AG,S? smTTZ—A&6 E s1n2n; s1n2n;

/;\/—\
M-
&

J

(iﬂjp.(y)ﬂ«;j sinT%+Fm sin2T[%JPi(x) (11)

4
+ [Z F P, (y) Fy s sin T[% +F; ;sin ZH%Jsin n%

4
+(ZF P (y)+F,; sin]‘%+F6,6 sin2n%jsin21‘[£=0, 0<x<a, 0<sy<bh.

6.j7 J
a

Equation (11) must be satisfied for any 0<x<a , 0<y<b. In equality (11), the following
functions are linearly independent:

B(x). B(x). B(x). B.(x), B(¥), B.(¥). B (5) B (),

X . x .
sin TI— , sin nl, sin 2Tt— , sin ZTTX.
a b a b

(12)

We equate the coefficients in (11) left and right of the linearly independent functions (12), taking
into account B' = P/=0, P =P, P'=P,. Asaresult, we have the following equations from (11)

e when equating the coefficients of the P, (x) :

A’j,l + A1,3 + E,l =0’ A3,2 + A1,4 + El :0’ A3,3 + E,3 :0’ A3,4 + E,4 = 0’

e 470 (13)
A3,5 _?AI,S + F1,5 =0, A3,<) _b_zAl,é + Fl,s =0.

e when equating the coefficients of the P, (x)

A4,1 + A2,3 + F2,1 = 0’ A4,2 + A’2,4 + F2,2 = 0’ A4,3 + F2,3 = 0’ A4,4 + F2,4 = 0’

s 41T (14)
A4,5 _b_zAz,s +F2,5 =0, A4,6 _?Az,s +F2,6 =0.

e when equating the coefficients of the P, (x)

T 4tC
A3,3 +F3,1 =0, A3,4 +F3,2 =0, F3,3 =0, F3,4 =0, _b_2A3,5 +F3,5 =0, _b_AS,G +F3,6 =0. (15)

e when equating the coefficients of the P, (x)

T 410
+F4,1 =0, A4,4 +F4,2 =0, F4,3 =0, F4,4 =0, __A4,5 +F4,5 =0, _b_A4,6 +F4,6 =0. (16)

b2

A

4.3

. i ._X
e when equating the coefficients of the sin TT—
a
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T ¢ s T
_?AS,I +A5,3 +F5,1 =0, _?As,z +A5,4 +F5,2 =0, _?As,s _b_2A5,5 +F5,5 =0,

(17)
T 410 ™ ™
T A T At E g =0, 5 A HE =0, -5 A+ F, =0
a b a a
e when equating the coefficients of the sin 2
a
41T 410 41T 118
__2A6,1 + A6,3 +F, = 0, __2A6,2 +A L +HF, =0, __2A6,5 __2A6,5 +F = 0,
a a a b (18)
410 410 41 410
T A T A tFe =0, A F =0, —— A+, =0.
a b a a
Similarly, from equalities (9) we obtain
f‘l,lell’ f‘12=A1,2’fl,3=A1?’ f‘14=A14’f‘15= 1,5° f‘IG_AIG’
f2,l 11’ f22 A2,l’ f2,3 31’ f24 41’ f25 AS,I’ fZ,G_AG,l’ (19)

_A21’ f32 _Az,z’f3,3_A23’ f34_A24’f%s _Az,s’ f3,6:A2,6’
f, 12’ f42 Az,z’f4,3_ 3,22 f44_ 42’f4s As,z’ f4,6:A6,2-

Therefore, the functional system (9), (11) reduces to the overdetermined system linear algebraic
equations (13) - (19). Due to the fulfillment of the coordination conditions (3), this redefined system
has a solution. It can be seen from system (13) - (19) that relations (10) obtained from the matching
conditions (3) are satisfied automatically, since all equalities (10) are included in system (13) - (19).
36 equations are needed from system (13) - (19) to find unknowns (6), and the rest of the equations are
applicable for compiling relations between the coefficients f; ;,i=1+4, j=1+6 of functions (7) and

1,

the coefficients F, i i=1+6, j=1+6 of the internal source F (x, y).

Thus, from the system of equations (13) - (19) we find the following values of the coefficients 4, ;:

Al,j =ﬁ,_j’ AQ,_;' :f3,_j’ ]:1_6

M=o A= Fos A = A = A= S R A =T
= fous Ay = Jaur Az =—F,, A, =-F,,, A4’5:l:[2_2f -F,. A, —42—]-2[2]‘3’6—172,6,
A =hhs Ay = f45,A53=§f —Fy A= Tif“ F,, (20)
o) e ()

410 rr2
Asy = Asn = Jfasr Ass :_2f2,6 Foy Ay = _2 26 " Fons

4TC rr2 4TC 41T
A65_ 65( 2 J A66 ( 2 +_2]
a a b

Substituting the coefficients from (20) into expression (4), we obtain the problem exact solution.
From (10), (15), (16) it follows that when the boundary conditions (2) and the internal source (8)
are specified, the following conditions must be satisfied:
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fu=hta La=he Fa=fis fio = fas (21)
Fy=F,=F,=F,=0 (22)
From system (13) - (19), the following equations remained unused, which must be satisfied exactly:

A3,l + A1,3 + F1,1 = 0’ A4,l + A2,3 + F2,l = 0’ A3,2 + Al,4 + E,Z = 0’
A4,2 + A2,4 + F2,2 = 0’ A3,3 + F3,1 = 0’ A3,4 + F3,2 = 0’ A4,3 + F2,3 = 0’

s 4tC
A4,4 + F4,2 =0, _?Aas + F3,5 =0, _b_zAS,é + F3,<) =0, (23)
™ 410 s
_?Aat,s +F4,5 =0, _7A4,6 +F4,6 =0, _?Asg +Fs,3 =0,

4tC AT
a> Am +F6,3 =0, _?AM +F6,4 =0.

s
~ At F,=0.-

Substituting the found coefficients (20) into equations (23), we obtain additional equalities:

f1,3 = _f2,3 _E,l’ f1,4 = _f4,3 - Fl,za f3,3 = _f2,4 _FZ,I > f3,4 = _f4,4 - Fz,z > (24)

E,3 = F‘3,1’ Fi,4 = F‘3,2’ F4,1 = F2,3’ F2,4 = F;l,2 4 (2’5)

_b2 b2 _ b2 b2 :aZ a2
f1,5 - le(le FH +F1,5J’ fl,é 4Tl2 [41_[2 F3,6 +F1,<)J’ f2,5 le [le Fs% +F5,1J’
= 612 (1_2 :b_2 b_2 :b_2 i
f2,6 _4T[2 [41_[2 Fs,s +F6,1j’ fzs TEZ(TEZ F4,5 +F2,5J’ fs,e 4Tl2 [41_[2 F4,6 +F2,6j’ (26)

f4,5=a¥[a¥}g,4 +F5,2j’ f4'6:4fl_T[2[4‘.1_T[2F6’4 +F6’2J'

Thus, the exact solution (20) exist when conditions (21), (22), (24) - (26) are satisfied.

3. Results and discussion
Let us consider several options for setting problem (1) - (3), depending on the presence or absence of a

source F (x, y) and various combinations of setting functions (7) in boundary conditions (2).

Let F (x, y) =0. Then from formulas (20) and additional equalities (26) follows that the problem
i=1+4, j=1+4 included
in the boundary conditions (2), and the exact solution form will contain only polynomials from the
boundary function M, (x, y) .

exact solution will be determined only by the values of the coefficients f; ;,

If boundary conditions are specified by a linear law (only polynomials P, (x) and P, (y) , 1=1+2
will be used in functions (7)), the coefficients f,; =f,, =0, i=1+4, and the choice of values
fi o I= 1+2, j=1+2 is determined from conditions (21). We denote

ﬁ,l :Ti’ f1,2 :T2’ f2,1 :Ti’ f2,2 :’1;’ f3,1 :’1;’ f3,2 :T4’ f4,1 :7—'2’ f4,2 :T4‘ (27)
Boundary conditions given by the linear law can be written as
w0 =L O)FTR()+TA(y). Ul =14 (x)=TA(x)+ TR (),
= S HO)ELRO)HLE (). U], = fi(x) =LA (x) + LA ().

U
U

(28)
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Taking into account equalities (27), using formulas (20) we find

A1,1:T1’ A1,2=T2’ Az,l_ Azz 4
Al,j=A2,j:O,j:3+6, Ay = A = A4, —AG,,( =0, k=1+6.

We write the problem solution in the form (4) as follows
U(x.y)=[TA () + TR (y) R (x)+[ TR (5) + TR () P (). (29)

The distribution of the function U (x,y) from equality (29), constructed for
T,=1,T,=2, T,=3, T, =4 indomain Q_ (0<x <1, 0< y<2),is shown in figure 1a.
If we use all the polynomials P,.(x) and Fj( y), i=1+4 in functions (7), then we obtain the

specification of the boundary conditions by a nonlinear law, with respect to the variables x and y. To
draw up such boundary conditions, we will take into account equalities (27) and conditions (24).
Based on (24), we introduce the notation

f _];’ fi4_716’ f23_ ];’ f24_ 7’7,f33—]"7, f34_7;§’ f43 71G’f‘44 _ : (30)
Considering (27) and (30), we write the boundary conditions in the form

L =L (9)=TR () + LR (y)+ TR (y) + TR, (),

Ul _, = f,(x)=T,R(x) +T,P, (x) - TP, (x) - T,P, (), an
=L () =TR(y )+T4P(y)+TP(y)+TP(y)’
Ul _, = fi(x) = TR (x) + TR, (x) = T,P,(x) - T,P, ().

Using equation (27) and (30) according to the formulas (20) we find

A1,1:Tl’ AI,Z:TZ’ Al,3:7;’ Al,4=]16’ AZI:Y;’ A22=7;1’ A23 7;’ A24 8
A3,1=_T5’ A3,2=_T<)’A -1, A I,

4,,;,=4A,,=0,j=5+6, 4,,=A,,=0,i=3+6, AS,,( =A, =0, k=1+6.

The problem exact solution in the form of (4) will have the form

U(x.y)=[TR(y)+ TR (») + TR (y) + T,P () ] B ()

+|:T3P1(y)+T4P2(y)+T7P )+ TP, ()] P (x) (32)
~[LR()+ TR (y)]R(x) —[Tm )+ TR ()P (%)

The distribution of the function U (x, y) from equality (32), constructed for
,=1,1,=2, 1,=3,T,=4, T, =1, T, =2, T, =3, T, =4 in domain Q_, (0sx<1, 0<y<2), is
shown in figure 1b.

If F (x, y) #0, then from formulas (20) and equalities (26) follows that the form of the exact
solution will depend not only on the boundary conditions form, but also on the form of the function
describing the source F (x, y) .

Let the boundary conditions be given by equations (28). Consequently, equalities (27) hold. We
choose F (x, y) in such a way that only the coefficients from equalities (25) are not equal to zero. We

denote

E,I:E3 Ql’ 14_F32 Q2’ 41_F23 Q3’ 24_F42 Q4‘ (33)
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Then, considering (22) and (33), we write the source F (x, y) in the form

F(x,y)=(QPR () + QP () B (x)+ (2R (y) + QP (¥)) B (%)
+(OR (y)*+ 0. ()P (x) +(,R (¥) + Q. (¥)) P ().
Substituting the coefficients from (27) and (33) into formulas (20) we find

Al,l =1, Al,z =T,. A2,1 =T, Az,z =T, A3,3 = _Ql’ A3,4 = _Qz’ A4,3 = _Q3’ A4,4 = _Q4’
A1,_,' =A2,j =0, j=3+6, A3,l. =A4,l. =0, i=1+2, i=5+6, As,k =A6,k =0, k=1+6.

(34)

Therefore, the solution of the problem in the form (4)
U(x.y)=[TR(y)+T,P(y)]P x)+[TP )+ 1.2 (y) P ()

0B ()* 2R ()] (x)-[0.()* 0B ()]A () G

The distribution of the function U (x,y) from equality (35), constructed for

I,=1T,=2, T,=3,T,=4, 0, =20, Q,=20, Q,=20, Q,=20, in domain Q, (0<sx<I,
0< y<2) is shown in figure Ic.

We choose equality (31) as the boundary conditions, and set the source F (x, y) by formula (34).
Then the coefficients found according to the formulas (20) will take values

Al,l =]11’ Al,2 =];’ A1,3 =];’ A1,4 :7;’ A2,1 =];’ A2,2 :T4’ A23 E’ A24 8
A3,1=_T5’ A3,2=_7;’A4,1:_7;’A4,2:_7;’ A3,3=_Q1’ A3,4=_Q2’ 4,3__Q3’ 4,4:_Q4’
4,;=A,,=4,,=A,,=0, j=5+6, 4, =A, =0, k=1+6.

The problem exact solution will take the form
U(x.y)=[TR(Y)+ TP (»)+ TR (¥) + TR ()] R ()

HIR()+ TR (0)+ TR () + TP ()] P x)

~[TR () + TP () + QP (3) + QP (¥) ] A (x)

“[LR()+ LR (y)+ QP (v)+ QR (v) A (%)

(36)

The distribution of the function U (x, y) from equality (36), constructed for
=1,T,=2 1T,=3,T,=4, T,=1, T, =2, T, =3, T, =4, Q, =20, 0,=20, Q,=20, Q, =20 in
domain Q_ (0<x <1, 0< y<2),is shown in figure 1d.

As figure 1 demonstrates, the behavior of the function U (x, y) in the corners of the domain Q_ is
completely described by constants 7, T,, T;, T,, regardless of the boundary conditions (28) or (31)
and the internal source presence F (x, y).

Expressions (37), (38), (39) and (40), allowing to compute the values of the function U (x, y) in

the center of the domain Q_, are obtained respectively from the formulas of the exact solution (29),
(35), (32) and (36)

a b 1
Ul == T +T,+T, +T, 37
(2’2) 4( HLAT AT, 7)
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ab 1 a’b?
U[E;E]zz(T1 +T, +T, +T,) - o (0,+0,+0,+0,), (38)
ab 1 a’ b?
U(E;EJ=Z(TI+T2+T3+E)+§(TS+T6+T7+7;)—§(T5+T6+T7+7;), (39)

2 2

jzi(Tl +T, +T, +T4)+;1—2(T5 +T, +T, +Ts)_§_2(Ts +T,+T, +T,)

SRS

U (2;
2 (40)

a’b’
256

(Q+0,+0,+0,).

Formulas (37) - (40) show that the presence of an internal source F (x, y) decreases the value

U (x, y) in the center of the domain Q_ in comparison with similar values when F (x, y) =0. This

result is shown in figure 1.

Figure 1. The distribution of the function U (x, y) , constructed by the formula:
(@) (29); (b) (32); (c) (35); (d) (36).
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Formula (37) show that the value U (x, y) in the center of the rectangular domain is equal to the

arithmetical mean value U (x, y) in the corners when boundary conditions are specified by formulas
(28). From formulas (39) and (40) we can conclude that in the case a =b the value of the function
U (x,y) in the center of the domain Q_ will be equal to the value calculated according to the

formulas (37) and (38), respectively.

Now we show the application of the obtained two-dimensional exact solutions the Poisson equation
for solving mechanics problems on the example of the membrane deflections problem. In [4], solution
is given to the deflection of a membrane, which contour lies in the plane xoy, and the membrane load

is constant. In this paper, we consider the case when the membrane contour will lie in a plane other
than xoy, and the load acting on the membrane is variable. The boundary conditions for such a

problem are written in the form (28). The membrane load is given by formula (34). The exact solution
of this problem has the form (35).

The deflection values U (x, y) in the center of the membrane are described by the formula (38).

We see that at constant values T, T,, T,, T,, Q,, Q,, O,, O, on the deflection of the membrane is

influenced by its sizes. The deflection of the membrane increases with their increasing.
Structural carbon steel of ordinary quality of VSt3ps brand was chosen as the membrane material.
It has the following characteristics [14]

R, =235 (0° Pa, v=0,25, E=2,1300" Pa,

where Ry is calculated resistance of the membrane material.

Different values of the parameters 7, 7,, T;, T,, Q,, Q,, 0;, O,, a, b were selected so that the

stresses did not exceed the calculated resistance of the membrane material under a biaxial stress state
[15]

=0<R,, (41)

where

E E 1(awY 1w’
l_vz( X )‘) y 1_\)2( y x) X Z(Gx] y Z(Gy] ( )

Type load (34) and the deflection of the membrane, calculated by the formula (35) shown in figure 2
and figure 3 respectively. Calculations were performed with

T=T,=0011, T,=7,=0.0113, ¢ =0, =Q, =0, =2102, a=1m, b=2 m. (43)
1 2 3 4 1 2 3 4

Computational experiments showed that the maximum deflection U _, of the membrane for the

variable load F (x,y) specified by equality (34) is not in the center of the membrane, but in its
vicinity.

The stress components in the membrane calculated according to formulas (42) according to data
(43) are shown in figure 4, and the distribution & calculated by formula (41) is shown in figure 5.
Figure 4 and figure 5 show that stresses increase with movement from the center of the membrane to
its boundaries and reach their maximum in the middle of the membrane sides. The greatest tension is
in the middle of the long sides. This result coincides with the results described in [4] for a constant
load on the membrane, which lies in the plane xoy .

10
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y X

00
Figure 2. Type of variable load. Figure 3. The deflection of rectangular
membranes under the action of variable loads.

Figure 4. Stress components in the membrane: (a) 0 ; (b) g,.

4. Conclusion

The method of fast expansions allows to obtain not only approximate solutions [16-18], but also exact
ones. The obtained solutions in this article are convenient to use both for theoretical research and for
the numerical experiments formulation. The coefficients numerical values selection of functions
included in the boundary conditions and the source F (x, y) should be performed taking into account

the equalities (21), (22), (24) — (26). Calculations with a variable load on the membrane showed that
the stresses begin to increase from the center to the boundaries of the membrane, reaching their
maximum in the middle of the membrane sides. The greatest stress is in the middle of the long sides.

11



Applied Mathematics, Computational Science and Mechanics: Current Problems IOP Publishing

IOP Conlf. Series: Journal of Physics: Conf. Series 1479 (2020) 012146  doi:10.1088/1742-6596/1479/1/012146

7
TN,

Vil
G\

3@,"

7 o

Figure 5. Distribution G.
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