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Abstract. In the present paper, we describe a model of a prestressed inhomogeneous body and 

provide the variational and weak statements. On its basis, we study a problem of mixed 

vibrations of a non-uniform plate with inclusions and a sandwich-structured three-ply plate 

under the conditions of the residual stress-strain state. We build the numerical finite-element 

solution on the basis of the weak problem statement and analyze the effect of the prestress 

states on its frequency response functions. In addition, we identify the prestress level in the 

middle layer of the composite plate by the data on frequency characteristics measurements. 

1. Introduction 

Investigations of problems on mechanics of deformable solid body under residual (or initial, or pre-) 

stress state play an important part in strength-and-stability assessment and in reconstruction of 

inhomogeneous properties [1]. In many works published, when modeling and identifying prestress 

state in the framework of nondestructive testing approach, authors use models of homogeneous 

prestresses. However, to provide efficient technologies of nondestructive testing, it is necessary to 

develop the models allowing to account and determine inhomogeneous prestress state on the basis of 

the given displacement or deformation fields at the body boundary with the usage of present-day 

computational algorithms including finite element method. 

Among the works devoted to prestressed beams and plates, most of them relate to prestressed 

concrete and heterogeneous structures like sandwich composites. Problems on modern complex 

structural materials, for example, layered or functionally graded composites, in the presence of 

prestress fields, are scantly explored in the literature. In many engineering applications, researchers 

confine themselves to restoring magnitudes of initial forces forming prestress fields. In [2], the 

techniques for determining prestress in concrete structures are developed. The paper [3] presents a 

method for identifying pre-tension in a prestressed concrete bridge deck by measuring its dynamic 

responses; to simulate the bridge deck, the authors used the Euler-Bernoulli beam model and FEM. 

Inhomogeneous plates are common structural elements, therefore, their deformation models are 

extremely relevant in solving problems arising in modern construction, production of military and 

civilian technical systems of wide use (e.g. cutting systems, membrane sensors, shielding elements, 

etc.). 

In manufacturing, residual stresses are often intentionally embedded in structures in order to 

improve their mechanical properties, e.g. formability. The article [4] presents computational and full-
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scale experiments to study the effect of elastic prestress on the deformed shape of an aluminum alloy 

plate sample at the stage of laser hardening. The authors proposed a new technique for simulating the 

effect of prestress on bending deformation and residual stress formation based on the “eigenstrain 

method” [5]. The numerical model allows predicting the deformed shape and uniaxial residual stress 

distributions in the plates under study. 

We also note the importance of using variational and weak statements of direct and inverse 

problems allowing to describe operator relations and to provide efficient numerical solution. A new 

computational method for solving linear elasticity problems based on the combination of the Galerkin 

method and FEM is given in [6]. The idea behind the method lies in the use of weak statements for the 

corresponding differential operators. 

A review of various approaches to modeling prestressed elastic bodies is given in [7]. In the work 

[8], a number of ways to identify prestress fields in elastic bodies, like plates, are described in the 

framework of non-destructive acoustic method. In [9-10], the problems of reconstructing an 

inhomogeneous prestressed state in non-uniform rods and thin plates are investigated, and some 

models of deforming prestressed plates within the classical approaches are proposed. Let us also 

mention the works [11,13] presenting a model of plate oscillations in the framework of non-classical 

deformation hypotheses and the technique for the inverse identification of plane prestressed state in a 

plate. 

In this paper, on the basis of the model of a prestressed inhomogeneous body, we study mixed 

vibrations of a non-uniform plate with inclusions and a sandwich three-ply plate under the conditions 

of the residual stress-strain state, analyze the effect of the prestress states on its frequency response 

functions, and suggest a simple technique for identification of the prestress level in the composite plate 

by the data on the measured frequency characteristics. 

 

2. Vibrations of a prestressed elastic body. Variational and weak formulations 

Consider an elastic body in two configurations (see figure 1). In the initial deformed configuration 0 , 

as a result of some finite deformations, a self-balanced field of initial stresses is present in the body. 

We shall consider this configuration as the reference one and use the material (Lagrangian) way of 

describing motion, i.e. relative to the coordinates of the position vector 0R . Next, disturbing the 

configuration
 0  and superimposing small deformations to it, we obtain the second configuration  . 

We assume that in the configuration   the body has a volume V  bounded by the surface 

;uS S S   it is rigidly clamped on the boundary part uS , and it is loaded with a time-varying load 

P  on the boundary part S . 

 

 

Figure 1. Two configurations of an elastic 

body: the initial one 0 , and the perturbed 

one  . 

 

One of the most widespread models of prestressed bodies that can be found in literature is a model in 

which the initial deformed state can be determined by a geometrically linear theory. This assumption 

corresponds to the fact that the gradients of initial displacements can be neglected in comparison with 

unity. The linearized statement of the problem on steady-state oscillations of a prestressed elastic body 

for small incremental quantities without explicitly taking into account the initial deformation has the 

form [7,10,11] 
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2 0ji j i iT b u       (1) 

 
0 0 0ji ji ij ij j iT b           (2) 

 0 0

0 0 0 0

u u
i i ij j iS S

u f n P      (3) 

 0
u

u
i S ji j iS

u T n P      (4) 

Here jiT  are the components of the nonsymmetric 1
st
 Piola-Kirchhoff incremental stress, ij  are the 

components of the linearized symmetric 2
nd

 Piola-Kirchhoff stress tensor, iu  are the small 

displacement vector components,   is the body density, ib  are the body force components,   is 

steady-state vibration frequency, iP  are the components of the surface load vector. The quantities with 

the upper index “0” correspond to the initial body state (e.g., 0
iu  are the initial displacement vector 

components,
0
mj  are the prestress tensor components, etc.). The incremental stress and strain tensors 

components are determined according to ,ij ijkl klC 
  

 1

, ,2ij i j j iu u  . Here 
0

,ji i m mju    are 

components of the tensor that generally depends on the prestress tensor components and the 

displacement gradient.
 The variational and weak formulations of the problem (1)-(4) will take form  

 

2( ) 0i i ij i j ji i j i i

S V V V

P u d S u dV u dV u u dV



                  (5) 

 

2( ) 0v
i i ij ij ji i j i i

S V V V

Pv d S dV v dV u v dV



              (6) 

In [7] it was shown that the original oscillation problem reduces to the problem of finding the 

stationary value of the functional 

 2
0( ) 0K     (7) 

 
21 1 1

02 2 2ij ij ji i j i

V S V V

dV P udS v dV K u dV



                 

Here   and K  are classical representations for potential energy without taking into account 

prestress, and kinetic energy, respectively.  

Such a formulation is convenient for solving a large class of inverse problems when it is required to 

determine the level or inhomogeneous prestress fields on the basis of the given information about the 

displacement field. 

 

3. Problem for a prestressed plate with circular inclusions 

Consider steady-state oscillations of an elastic isotropic inhomogeneous thin plate with a plane cross 

section S , clamped at the boundary part ul , under the action of periodic uniformly distributed force 

i tP Pe  , applied to the boundary part  l . We assume that all the plate characteristics ( ,
 
h

 
– the 

plate thickness, 
*2

2

 


 


  
– the Lamé parameter for the plane stress state,

 
*  – the standard Lamé 

parameter,   – the shear modulus) depend on 3 spatial coordinates. Suppose that the plate contains 

non-uniform spatial prestress distribution 
0 0( )ij ij kx  , , , 1,2,3i j k  . According to the plate theory in 
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the framework of the Timoshenko-Mindlin model, and considering coupled in-plane and out-of-plane 

vibrations, we take on the following hypotheses  

 1 1 3 1 2 2 3 2 3,   ,   ,u x u x u w       
 (8)

 

where ( )x     are the normal rotation angles along the axes x , ( )x     are in-plane 

displacements, ( )w w x  is the plate deflection,
 , 1,2   . Denote the corresponding test functions 

by capital letters ,  Z ,  W   and assume they satisfy the same essential boundary as the functions 

,  ,  w    do: 

 0,  Z 0,  0.
u u ul l l

W    
 (9)

 

Based on hypotheses (8) and boundary conditions (9), the weak statement of the formulated 

problem (6) will take form [11] 

  3 , ,Z ,

l S

P Z PW dl Q R S T W



                     

    2
2 1 0P P Z P Z 0wW dS                     .       (10) 

where  

2 1 1
2 , 1 , 2 , , 1 , , , , 3( ) M ( ) ( ,M )m m m m m m m mQ                                     

 

1 0 0
1 , 0 , 1 , , 0 , , , , 3( ) M ( ) ( ,M )m m m m m m m mR                                       

1 0 0
0 3 , 3 , 33M ( , ) ,m m m mS w               

  

0
0M ( , ) , ,m mT w w       

P  are the in-plane components of the load vector, 3P  is the magnitude of the bending load. 

Also we introduce the following functions: 

/2

3 3

/2

,

h

p
p

h

gxG dx



     , , , ,p
p p p pG    

  0, , ,g      ( , , 1,2,     0,1,2m p    ), 

representing a generalization of the law for integral characteristics ,M ,P , p
p p p    expressed through 

the corresponding parameters       ; for instance, 

/2

2 2
12 12 3 3

/2

0 ,

h

h

x dx



    

/2

1 3 3

/2

.

h

h

x dx



    

Note that here we consider couple vibrations of the plate, including in-plane and out-of-plane 

modes. The problem in such a formulation can be divided and reduced to separate problem statements 

on in-plane and out-of-plane vibrations only if the additional symmetry conditions described in [11] 

are fulfilled. In the particular case for a plate with constant characteristics and a uniform prestress 

field, these conditions are met automatically, and the problem for the plate is successfully divided 

according to the oscillation modes. It is important that the proposed model allows you to set an initial 

state in the plate arbitrarily: both in the form of analytical dependencies and numerically. 

It can be verified that, in a particular case for a homogeneous plate under conditions of a uniform 

prestressed state, if also the corresponding deformation conditions are fulfilled according to the 
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Kirchhoff model, the derived statement of the problem  may be divided into two classical problems of 

bending and planar vibrations of the plate. 

The problem (10) was studied numerically using the FEM; the influence of the inhomogeneous pre-

stressed state plate on its amplitude-frequency characteristics and resonant frequencies was 

investigated. 

Below, as an example, we provide the results of computational experiments of solving the direct 

problem for a prestressed rectangular plate with in-plane inhomogeneity: the plate made of fiberglass 

contains 4 circular aluminium inclusion (see figure 2). The problem parameters are as follows: 1l   m 

(plate size along the axis 1x ); 0.4b  m (plate size along the axis 2x ); 0.05h  m; the material of the 

plate fiberglass with the parameters 35pE   GPa, 0.21p  , 1900p  kg/m 3 , the material of the 

inclusions is aluminium: 170cE   GPa, 0.32c  , 07 02c  kg/m 3 ; the diameter of circular 

inclusions is 0 0.12r b . 

 

Figure 2. 3D view of the 

plate with circular 

inclusions.  

 

The finite element mesh was additionally refined in the vicinity on the inclusions (figure 3). In all 

the figures below, the plate is clamped by the left side ( 1 0x  ). 

 

 

Figure 3. FE-mesh of the plate section 

2D region. 

 

 

As soon as we assume plate’s thickness homogeneity, we have: 

/2

3

/

0 1 2 1 2

2

1 2( , ) ( , ) ( , ) ,

h

h

L x x x xL dx L x x h



 
 

/2

1 1 2 1 2 3 3

/2

( , ) ( , ) 0,

h

h

L L xx x x x dx



 
   

/2

3
2 1 2 1 2 1 2

2
3 3

/2

1
( , ) ( , ) ( , ) ,

12

h

h

L x x x x L x x hL x dx



 

 where 1 2( , )L x x  stands for each material property ( 1 2( , )E x x , 1 2( , )x x , 1 2( , )x x ). 

The non-uniform residual stress field is considered as a result of action of the initial mechanical 

load applied to the boundary part 
11 | 150x lP    MPa (uniaxial pre-tension). To find such a field in the 

plate, the corresponding static problem was additionally solved, and the fields of initial displacements 
0
1u , 

0
2u  and stresses 

0
11 , 

0
12 , 0

22  were determined (see figure 4-5). 
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A  B 

  

Figure 4. Results of the finite element calculation: initial displacement field (cm) 0
1u  (A), 0

2u  (B). 

 

A B 

 
 

C 

 
Figure 5. Results of the finite element calculation: prestress field (0.1   MPa)  

0
11  (A), 

0
12  (B), 0

22  (C). 

 

Figure 6 shows the fields of deflection and normal rotation angles calculated in the static case (for

0  ) for the plate taking into account the initial loading. The value of the bending load was equal to 
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3 10P   MPa and was applied at the border 1x l . These functions were found as a result of solving 

the problem in its weak statement (10) (via FEM), with using the prestress functions 0
11 , 0

12 , 0
22   

found numerically at the previous step. 

 

A 

 
 

B C 

 
Figure 6. Results of the finite element calculation: A) deflection field w  (cm); B) rotation angle 1  

(dimensionless) field; C) rotation angle 2  (dimensionless) field. 

 

 

Figure 7 shows the amplitude-frequency characteristics of the plate calculated at the point (l, 0) with 

and without prestress field. According to the curves obtained, it can be seen that the chosen 

inhomogeneous prestress field, formed as a result of applying a mechanical load, makes a significant 

contribution to the change of the amplitudes and the shift of resonant frequencies. Thus, it is 

permissible to consider an inverse problem on determination of level and structure of 

prestress state of a plate on the basis of the data on frequency response function measured in the 

resonance vicinity. 
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Figure 7. Frequency response function of the plate calculated at the point (l, 0) excluding ( w ) and 

taking into account the prestress field of ( *w ). 

 

 

4. Problem for a sandwich-structured composite prestressed plate 

Now we consider a special problem for a three-ply sandwich plate with a uniformly prestressed 

(initially tensioned or compressed) inner layer of thickness   (see figure 8).  

 

 

Figure 8. Cross 

section of the 

sandwich plate with 

a prestressed inner 

layer.  

The material and prestress functions may be generalized as follows (figure 9): 

 
2 3

3

1 3

, / 2;
( )

, / 2, / 2 ,

L x
L x

L x h





 
 


  (11) 

 

Figure 9. Material and 

prestress properties 

throughout the plate 

thickness.  
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Therefore, 

/2

3 3

/

0 2

2

1( ) ( ) ,

h

h

L x dL L hx L 



  
  

/2

31 3 3

/2

( ) 0,

h

h

L x x dL x



 

 
 

/2

2
3 3 3

/2

3 3 3
2 2 1

1 1
,

1
)

2 12
(

h

h

L L hL x x Ldx  



        (12)

 Assume that the upper and lower layers are prestress free, and in the middle layer the prestress tensor 

component 0
11

 
 is the only nonzero one: 

0
11(1) 0, 

 

0 0
11(2)  .  Hence, 

/2

0 0 0
11 11 3

/2

,

h

h

dx  



  
 

/2

1 0
11 11 3 3

/2

0,

h

h

x dx



  
 

/2

2 0 2
11 11 3 3

/2

3,
1

12

h

h

x dx  



    (13) 

In the same way as it was done with the previous problem, the problem for this plate was solved via 

FEM on the basis of the weak statement (10).  

We also consider a problem of identifying the level of uniform prestressed state of the plate’s 

middle layer. In this case, as the probing load, we choose the in-plane load applied to the free 

boundary part. The information on the plate geometry (the plate occupies rectangular continuous 

region), including the thickness of the middle layer, is considered known. In this case, after 

eliminating the part corresponding to the out-of-plane vibrations, the weak formulation (10) will take 

the form 

    2
11 1,1 12 1,2 21 2,1 22 2,2 0 1 1 2 2 1 1 2 2Z Z Z Z P ( Z Z )

S l

R R R R dS PZ P Z dl



         
 

  0
11 0 1,1 2,2 0 1,1 11 1,12 ,MR      

 
 22 0 1,1 2,2 0 2,22MR    

 

12 0 1,2 2,1M ),(R   
 2,

0
2 11 0 1,2 11 2,1M ( ) ,R      

 (14) 

In this particular case, the formulation (14) includes only the integral characteristics corresponding to 

the common averaging according to the theory of the mean value of a function: characteristics of 

elastic modules 0 , 0  and of prestress component 
0
11 . Thus, we can express the integral 

characteristic 
0
11  through other known integral characteristics and the planar displacement field from 

the weak formulation of the direct problem (14), or from the similar formulation of the boundary value 

problem [10]. Based on the result published in [13] and taking into account that 0 0
11 /  , we 

obtain 

  0 1,1 2,2 0 1,
0

1 2,1 2 1,111 0 1,22M M ( ), /, .
h


           

   (15)
 

The formula (15) allows to restore the value 0  based on the additional information on the given 

values of the components of planar displacements 1 2,     measured in a set of points in the sectional 

area of the plate S for a given oscillation frequency. Using, for example, the spline interpolation, one 

may calculate the functions of displacement 1 2,   
 
based on their values in the points set, and then 

find the derivatives ,i j  with the help of these functions at the required points of the plate.  
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In order to restore various values of the prestressed state level of the middle layer, we conducted a 

series of computational experiments; we considered the range 1
0 5 210 0/ 1E    for different 

frequencies from the frequency range below the 2
nd

 resonance. The plate parameters are as follows: 

0.2l  m, 0.05b  m, 0.003h  m, 0.4h  , 0.29,p c    1 210E  GPa, 1 7700  kg/m 3 , 

2 300E  GPa, 2 9000   kg/m 3 . To calculate the solution of the corresponding direct problem, we 

used a uniform 80   60 finite element mesh. The analysis of numerical experiments on the level 0  

reconstruction revealed that the accuracy of the inverse problem solution largely depends on the 

choice of the probing frequency and the loading mode. Table 1 shows some results of the 

reconstruction of 0  under the longitudinal uniformly distributed vibratory load (along the axis 1x ) 

applied to the free face of the plate, at a frequency of 223.985 Hz (in the vicinity of the first 

longitudinal resonance). 

 

Table 1. Results of the reconstruction error of the middle layer prestress level (the exact value 0  and 

the reconstruction 0  were compared). 

Prestress level
0

1/ E   

Relative 

reconstruction error 

(%) 

610  
510  

91.0898 

8.187 

410  0.102991 

310  0.931623 

210  1.00991 

 

It can be seen from the table that the reconstruction is successful for the prestress levels exceeding the 

value 5
1

0 / 10E   ; lower prestress levels do not have any significant frequency response, and 

therefore their recovery process is difficult. Let us mention that for the series of experiments described 

above, the most advantageous ranges for selecting the probe frequency were located in a close vicinity 

of the first longitudinal resonance frequency. In this way, this result correlates to the results published 

in [13]. In addition, let us mention a directly proportional dependency of the reconstruction accuracy 

on the middle ply thickness. 
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